ESP8685

Datasheet

Ultra-Low-Power SoC with RISC-V Single-Core CPU
Supporting IEEE 802.11b/g/n (2.4 GHz Wi-Fi) and Bluetooth 5 (LE)
2 MB flash embedded in the 4×4 mm QFN package

Product Overview

ESP8685 is an ultra-low-power and highly-integrated MCU-based SoC solution that supports 2.4 GHz Wi-Fi and Bluetooth[®] Low Energy (Bluetooth LE). It has:

- A complete Wi-Fi subsystem that complies with IEEE 802.11b/g/n protocol and supports Station mode, SoftAP mode, SoftAP + Station mode, and promiscuous mode
- A Bluetooth LE subsystem that supports features of Bluetooth 5 and Bluetooth mesh
- State-of-the-art power and RF performance
- 32-bit RISC-V single-core processor with a four-stage pipeline that operates at up to 160 MHz
- 400 KB of SRAM (16 KB for cache) and 384 KB of ROM on the chip, and SPI, Dual SPI, Quad

- SPI, and QPI interfaces that allow connection to external flash
- Reliable security features ensured by
 - Cryptographic hardware accelerators that support AES-128/256, Hash, RSA, HMAC, digital signature and secure boot
 - Random number generator
 - Permission control on accessing internal memory, external memory, and peripherals
 - External memory encryption and decryption
- Rich set of peripheral interfaces and GPIOs, ideal for various scenarios and complex applications

Block Diagram

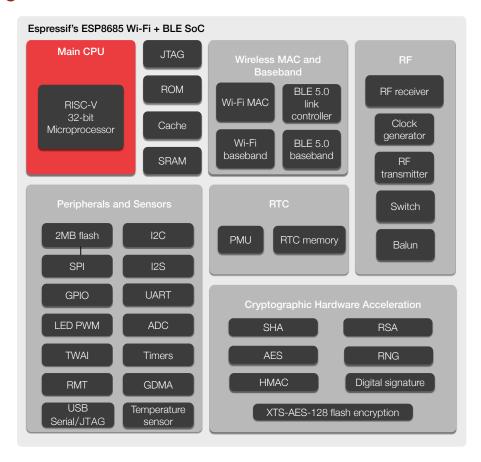


Figure 1: Block Diagram

Features

Wi-Fi

- IEEE 802.11 b/g/n-compliant
- Supports 20 MHz, 40 MHz bandwidth in 2.4 GHz band
- 1T1R mode with data rate up to 150 Mbps
- Wi-Fi Multimedia (WMM)
- TX/RX A-MPDU, TX/RX A-MSDU
- Immediate Block ACK
- Fragmentation and defragmentation
- Transmit opportunity (TXOP)
- Automatic Beacon monitoring (hardware TSF)
- 4 × virtual Wi-Fi interfaces
- Simultaneous support for Infrastructure BSS in Station mode, SoftAP mode, Station + SoftAP mode, and promiscuous mode

Note that when ESP8685 scans in Station mode, the SoftAP channel will change along with the Station channel

- Antenna diversity
- 802.11mc FTM

Bluetooth

- Bluetooth LE: Bluetooth 5, Bluetooth mesh
- Speed: 125 Kbps, 500 Kbps, 1 Mbps, 2 Mbps
- Advertising extensions
- Multiple advertisement sets
- Channel selection algorithm #2

CPU and Memory

- 32-bit RISC-V single-core processor, up to 160 MHz
- 384 KB ROM
- 400 KB SRAM (16 KB for cache)
- 8 KB SRAM in RTC
- 2 MB embedded flash
- SPI, Dual SPI, Quad SPI, and QPI interfaces that

allow connection to multiple external flash

Advanced Peripheral Interfaces

- 15 × programmable GPIOs
- Digital interfaces:
 - 3 x SPI (SPI0 and SPI1 are used to connect the embedded flash. Only SPI2 is available)
 - 2 × UART
 - $-1 \times 12C$
 - $-1 \times 12S$
 - Remote control peripheral, with 2 transmit channels and 2 receive channels
 - LED PWM controller, with up to 6 channels
 - Full-speed USB Serial/JTAG controller
 - General DMA controller (GDMA), with 3 transmit channels and 3 receive channels
 - 1 x TWAI[®] controller compatible with ISO 11898-1 (CAN Specification 2.0)
- Analog interfaces:
 - 2 × 12-bit SAR ADCs, up to 6 channels
 - 1 × temperature sensor
- Timers:
 - 2 × 54-bit general-purpose timers
 - 3 × watchdog timers
 - 1 × 52-bit system timer

Low Power Management

• Power Management Unit with four power modes

Security

- Secure boot
- Flash encryption
- 4096-bit OTP, up to 1792 bits for use
- Cryptographic hardware acceleration:
 - AES-128/256 (FIPS PUB 197)

- Permission Control
- SHA Accelerator (FIPS PUB 180-4)
- RSA Accelerator

- Random Number Generator (RNG)
- HMAC
- Digital signature

Applications (A Non-exhaustive List)

With ultra-low power consumption, ESP8685 is an ideal choice for IoT devices in the following areas:

- Smart Home
 - Light control
 - Smart button
 - Smart plug
 - Indoor positioning
- Industrial Automation
 - Industrial robot
 - Mesh network
 - Human machine interface (HMI)
 - Industrial field bus
- Health Care
 - Health monitor
 - Baby monitor
- Consumer Electronics
 - Smart watch and bracelet
 - Over-the-top (OTT) devices

- Wi-Fi and Bluetooth speaker
- Logger toys and proximity sensing toys
- Smart Agriculture
 - Smart greenhouse
 - Smart irrigation
 - Agriculture robot
- Retail and Catering
 - POS machines
 - Service robot
- Audio Device
 - Internet music players
 - Live streaming devices
 - Internet radio players
- Generic Low-power IoT Sensor Hubs
- Generic Low-power IoT Data Loggers

Contents

Bloo Fea	roduct Overview ck Diagram tures blications	1 1 2 3
1 1.1 1.2 1.3 1.4	Pin Definition Pin Layout Pin Description Power Scheme Strapping Pins	8 8 8 10 11
2 2.1	Functional Description CPU and Memory 2.1.1 CPU 2.1.2 Internal Memory 2.1.3 External Flash 2.1.4 Address Mapping Structure 2.1.5 Cache	13 13 13 13 13 14
2.2	2.2.1 CPU Clock 2.2.2 RTC Clock	15 15 15
2.3	Analog Peripherals 2.3.1 Analog-to-Digital Converter (ADC) 2.3.2 Temperature Sensor	15 15 15
2.4	2.4.1 General Purpose Input / Output Interface (GPIO) 2.4.2 Serial Peripheral Interface (SPI) 2.4.3 Universal Asynchronous Receiver Transmitter (UART) 2.4.4 I2C Interface 2.4.5 I2S Interface 2.4.6 Remote Control Peripheral 2.4.7 LED PWM Controller 2.4.8 General DMA Controller 2.4.9 USB Serial/JTAG Controller 2.4.10 TWAI® Controller	15 15 23 23 23 23 24 24 24 24 24
2.5	Radio and Wi-Fi 2.5.1 2.4 GHz Receiver 2.5.2 2.4 GHz Transmitter 2.5.3 Clock Generator 2.5.4 Wi-Fi Radio and Baseband 2.5.5 Wi-Fi MAC 2.5.6 Networking Features	25 25 25 25 26 26 26
2.6		26

2.6.1 Bluetooth LE Radio and PHY	27
2.6.2 Bluetooth LE Link Layer Controller	27
2.7 Low Power Management	27
2.8 Timers	28
2.8.1 General Purpose Timers	28
2.8.2 System Timer	28
2.8.3 Watchdog Timers	28
2.9 Cryptographic Hardware Accelerators	29
2.10 Physical Security Features	29
2.11 Peripheral Pin Configurations	29
3 Electrical Characteristics	31
3.1 Absolute Maximum Ratings	31
3.2 Recommended Operating Conditions	31
3.3 DC Characteristics (3.3 V, 25 °C)	31
3.4 ADC Characteristics	32
3.5 Current Consumption	32
3.6 Reliability	33
3.7 Wi-Fi Radio	33
3.7.1 Wi-Fi RF Transmitter (TX) Specifications	33
3.7.2 Wi-Fi RF Receiver (RX) Specifications	34
3.8 Bluetooth LE Radio	35
3.8.1 Bluetooth LE RF Transmitter (TX) Specifications	36
3.8.2 Bluetooth LE RF Receiver (RX) Specifications	37
4 Package Information	40
Revision History	41
Solutions, Documentation and Legal Information	42

List of Tables

1	Pin Description	8
2	Description of ESP8685 Power-up and Reset Timing Parameters	11
3	Strapping Pins	11
4	Parameter Descriptions of Setup and Hold Times for the Strapping Pins	12
5	IO MUX Pin Functions	16
6	Power-Up Glitches on Pins	17
7	Peripheral Signals via GPIO Matrix	18
8	Peripheral Pin Configurations	29
9	Absolute Maximum Ratings	31
10	Recommended Operating Conditions	31
11	DC Characteristics (3.3 V, 25 °C)	31
12	ADC Characteristics	32
13	Current Consumption Depending on RF Modes	32
14	Current Consumption Depending on Work Modes	32
15	Reliability Qualifications	33
16	Wi-Fi Frequency	33
17	TX Power with Spectral Mask and EVM Meeting 802.11 Standards	33
18	TX EVM Test	34
19	RX Sensitivity	34
20	Maximum RX Level	35
21	RX Adjacent Channel Rejection	35
22	Bluetooth LE Frequency	35
23	Transmitter Characteristics - Bluetooth LE 1 Mbps	36
24	Transmitter Characteristics - Bluetooth LE 2 Mbps	36
25	Transmitter Characteristics - Bluetooth LE 125 Kbps	36
26	Transmitter Characteristics - Bluetooth LE 500 Kbps	37
27	Receiver Characteristics - Bluetooth LE 1 Mbps	37
28	Receiver Characteristics - Bluetooth LE 2 Mbps	38
29	Receiver Characteristics - Bluetooth LE 125 Kbps	38
30	Receiver Characteristics - Bluetooth LE 500 Kbps	39

List of Figures

1	Block Diagram	1
2	ESP8685 Pin Layout (Top View)	8
3	ESP8685 Power Scheme	10
4	ESP8685 Power-up and Reset Timing	10
5	Setup and Hold Times for the Strapping Pins	12
6	Address Mapping Structure	14
7	QFN28 (4×4 mm) Package	40

Pin Definition 1.

1.1 Pin Layout

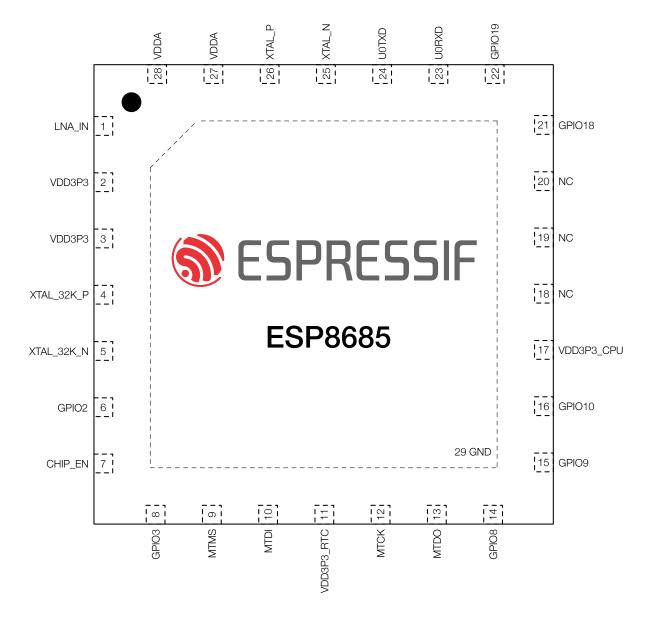


Figure 2: ESP8685 Pin Layout (Top View)

Pin Description 1.2

Table 1: Pin Description

Name	No.	Туре	Power Domain	Function		
LNA_IN	1	I/O	_	RF input and output		
VDD3P3	2	P_A	_	Analog power supply		
VDD3P3	3	P_A	_	Analog power supply		
XTAL_32K_P	4	I/O/T	VDD3P3_RTC	GPIO0, ADC1_CH0, XTAL_32K_P		
XTAL_32K_N	5	I/O/T	VDD3P3_RTC	GPIO1, ADC1_CH1, XTAL_32K_N		

Name	No.	Туре	Power Domain	Function
GPIO2	6	I/O/T	VDD3P3_RTC	GPIO2, ADC1_CH2, FSPIQ
				High: on, enables the chip.
CHIP_EN	7	I	VDD3P3_RTC	Low: off, the chip powers off.
				Note: Do not leave the CHIP_EN pin floating.
GPIO3	8	I/O/T	VDD3P3_RTC	GPIO3, ADC1_CH3
MTMS	9	I/O/T	VDD3P3_RTC	GPIO4, ADC1_CH4, FSPIHD, MTMS
MTDI	10	I/O/T	VDD3P3_RTC	GPIO5, ADC2_CH0, FSPIWP MTDI
VDD3P3_RTC	11	P_D	_	Input power supply for RTC
MTCK	12	I/O/T	VDD3P3_CPU	GPIO6, FSPICLK, MTCK
MTDO	13	I/O/T	VDD3P3_CPU	GPIO7, FSPID, MTDO
GPIO8	14	I/O/T	VDD3P3_CPU	GPIO8
GPIO9	15	I/O/T	VDD3P3_CPU	GPIO9
GPIO10	16	I/O/T	VDD3P3_CPU	GPIO10, FSPICS0
VDD3P3_CPU	17	P_D	_	Input power supply for CPU IO
NC	18	_		NC
NC	19	_	_	NC
NC	20	_		NC
GPIO18	21	I/O/T	VDD3P3_CPU	GPIO18
GPIO19	22	I/O/T	VDD3P3_CPU	GPIO19
U0RXD	23	I/O/T	VDD3P3_CPU	GPIO20, U0RXD
U0TXD	24	I/O/T	VDD3P3_CPU	GPIO21, U0TXD
XTAL_N	25	_	_	External crystal output
XTAL_P	26 — External crystal input		External crystal input	
VDDA	27	P_A	_	Analog power supply
VDDA	28	P_A	_	Analog power supply
GND	29	G	_	Ground

 $^{^{1}}$ P_A: analog power supply; P_D: power supply for RTC IO; I: input; O: output; T: high impedance.

² The pin function in this table refers only to some fixed settings and do not cover all cases for signals that can be input and output through the GPIO matrix. For more information on the GPIO matrix, please refer to Table 7.

1.3 Power Scheme

Digital pins of ESP8685 are divided into two different power domains:

- VDD3P3_CPU
- VDD3P3_RTC

VDD3P3_CPU is the input power supply for CPU.

VDD3P3_RTC is the input power supply for RTC analog domain and CPU.

The power scheme diagram is shown in Figure 3.

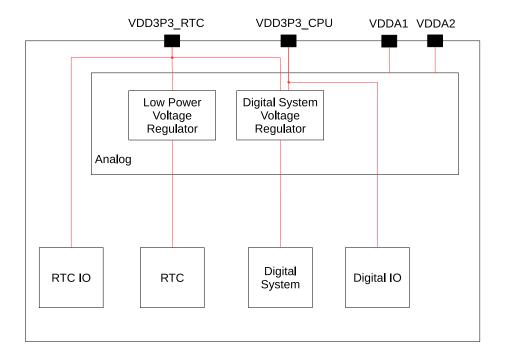


Figure 3: ESP8685 Power Scheme

Notes on CHIP_EN:

Figure 4 shows the power-up and reset timing of ESP8685. Details about the parameters are listed in Table 2.

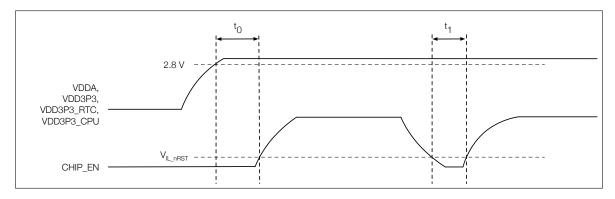


Figure 4: ESP8685 Power-up and Reset Timing

Table 2: Description of ESP8685 Power-up and Reset Timing Parameters

Parameter	Description	Min (μs)	
+	Time between bringing up the VDDA, VDD3P3, VDD3P3_RTC, and	50	
t_0	VDD3P3_CPU rails, and activating CHIP_EN		
+	Duration of CHIP_EN signal level $<$ V_{IL_nRST} (refer to its value in	50	
l ₁	Table 11) to reset the chip	50	

1.4 Strapping Pins

ESP8685 has three strapping pins:

- GPIO2
- GPIO8
- GPI09

Software can read the values of GPIO2, GPIO8 and GPIO9 from GPIO_STRAPPING field in GPIO_STRAP_REG register.

During the chip's system reset, the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is powered down or shut down.

Types of system reset include:

- power-on reset
- RTC watchdog reset
- brownout reset
- analog super watchdog reset
- crystal clock glitch detection reset

By default, GPIO9 is connected to the internal pull-up resistor. If GPIO9 is not connected or connected to an external high-impedance circuit, the latched bit value will be "1"

To change the strapping bit values, you can apply the external pull-down/pull-up resistances, or use the host MCU's GPIOs to control the voltage level of these pins when powering on ESP8685.

After reset, the strapping pins work as normal-function pins.

Table 3 lists detailed booting configurations of the strapping pins.

Table 3: Strapping Pins

Booting Mode ¹							
Pin Default		SPI Boot	Download Boot				
GPIO2	N/A	1	1				
GPIO8 N/A		Don't care	1				
GPIO9 Internal pull-up		1	0				
Enabling/Disabling ROM Code Print During Booting							
Pin Default Functionality							

		When the value of eFuse field EFUSE_UART_PRINT_CONTROL is
0 (default), print is enabled a		0 (default), print is enabled and not controlled by GPIO8.
GPIO8	N/A	1, if GPIO8 is 0, print is enabled; if GPIO8 is 1, it is disabled.
		2, if GPIO8 is 0, print is disabled; if GPIO8 is 1, it is enabled.
		3, print is disabled and not controlled by GPIO8.

¹ The strapping combination of GPIO8 = 0 and GPIO9 = 0 is invalid and will trigger unexpected behavior.

Figure 5 shows the setup and hold times for the strapping pins before and after the CHIP_EN signal goes high. Details about the parameters are listed in Table 4.

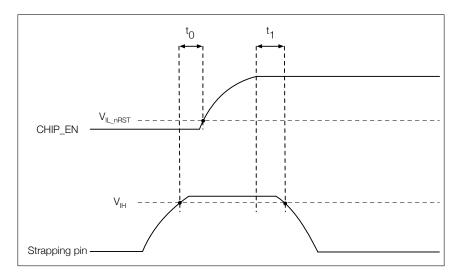


Figure 5: Setup and Hold Times for the Strapping Pins

Table 4: Parameter Descriptions of Setup and Hold Times for the Strapping Pins

Parameter	Description	Min (ms)
t_0	Setup time before CHIP_EN goes from low to high	0
t ₁	Hold time after CHIP_EN goes high	3

2. Functional Description

This chapter describes the functions of ESP8685.

2.1 CPU and Memory

2.1.1 CPU

ESP8685 has a low-power 32-bit RISC-V single-core microprocessor with the following features:

- four-stage pipeline that supports a clock frequency of up to 160 MHz
- RV32IMC ISA
- 32-bit multiplier and 32-bit divider
- up to 32 vectored interrupts at seven priority levels
- up to 8 hardware breakpoints/watchpoints
- up to 16 PMP regions
- JTAG for debugging

2.1.2 Internal Memory

ESP8685's internal memory includes:

- 384 KB of ROM: for booting and core functions.
- 400 KB of on-chip SRAM: for data and instructions. Of the 400 KB SRAM, 16 KB is configured for cache.
- RTC FAST memory: 8 KB of SRAM that can be accessed by the main CPU. It can retain data in Deep-sleep mode.
- 4 Kbit of eFuse: 1792 bits are reserved for your data, such as encryption key and device ID.
- · 2 MB embedded flash

2.1.3 External Flash

ESP8685 supports SPI, Dual SPI, Quad SPI, and QPI interfaces that allow connection to multiple external flash.

CPU's instruction memory space and read-only data memory space can map into external flash of ESP8685, whose size can be 16 MB at most. ESP8685 supports hardware encryption/decryption based on XTS-AES to protect developers' programs and data in flash.

Through high-speed caches, ESP8685 can support at a time up to:

- 8 MB of instruction memory space which can map into flash as individual blocks of 64 KB. 8-bit, 16-bit and 32-bit reads are supported.
- 8 MB of data memory space which can map into flash as individual blocks of 64 KB. 8-bit, 16-bit and 32-bit reads are supported.

Note:

After ESP8685 is initialized, software can customize the mapping of external flash into the CPU address space.

2.1.4 Address Mapping Structure

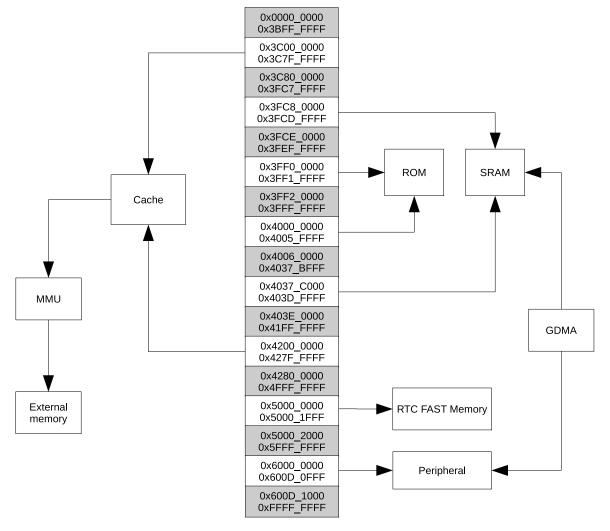


Figure 6: Address Mapping Structure

Note:

The memory space with gray background is not available for use.

2.1.5 Cache

ESP8685 has an eight-way set associative cache. This cache is read-only and has the following features:

• size: 16 KB

• block size: 32 bytes

pre-load function

• lock function

• critical word first and early restart

2.2 System Clocks

2.2.1 CPU Clock

The CPU clock has three possible sources:

- external main crystal clock
- fast RC oscillator (typically about 17.5 MHz, and adjustable)
- PLL clock

The application can select the clock source from the three clocks above. The selected clock source drives the CPU clock directly, or after division, depending on the application. Once the CPU is reset, the default clock source would be the external main crystal clock divided by 2.

2.2.2 RTC Clock

The RTC slow clock is used for RTC counter, RTC watchdog and low-power controller. It has three possible sources:

- external low-speed (32 kHz) crystal clock
- internal slow RC oscillator (typically about 136 kHz, and adjustable)
- internal fast RC oscillator divided clock (derived from the fast RC oscillator divided by 256)

The RTC fast clock is used for RTC peripherals and sensor controllers. It has two possible sources:

- external main crystal clock divided by 2
- internal fast RC oscillator (typically about 17.5 MHz, and adjustable)

2.3 Analog Peripherals

2.3.1 Analog-to-Digital Converter (ADC)

ESP8685 integrates two 12-bit SAR ADCs.

- ADC1 supports measurements on 5 channels, and is factory-calibrated.
- ADC2 supports measurements on 1 channel, and is not factory-calibrated.

For ADC characteristics, please refer to Table 12.

2.3.2 Temperature Sensor

The temperature sensor generates a voltage that varies with temperature. The voltage is internally converted via an ADC into a digital value.

The temperature sensor has a range of –40 °C to 125 °C. It is designed primarily to sense the temperature changes inside the chip. The temperature value depends on factors like microcontroller clock frequency or I/O load. Generally, the chip's internal temperature is higher than the operating ambient temperature.

2.4 Digital Peripherals

2.4.1 General Purpose Input / Output Interface (GPIO)

ESP8685 has 15 GPIO pins which can be assigned various functions by configuring corresponding registers. Besides digital signals, some GPIOs can be also used for analog functions, such as ADC.

All GPIOs have selectable internal pull-up or pull-down, or can be set to high impedance. When these GPIOs are configured as an input, the input value can be read by software through the register. Input GPIOs can also be set to generate edge-triggered or level-triggered CPU interrupts. All digital IO pins are bi-directional, non-inverting and tristate, including input and output buffers with tristate control. These pins can be multiplexed with other functions, such as the UART, etc. For low-power operations, the GPIOs can be set to holding state.

The IO MUX and the GPIO matrix are used to route signals from peripherals to GPIO pins. Together they provide highly configurable I/O. Using GPIO Matrix, peripheral input signals can be configured from any IO pins while peripheral output signals can be configured to any IO pins.

Table 5 shows the IO MUX functions of each pin.

Name No. Function 0 Function 1 Function 2 Reset **Notes** XTAL_32K_P 4 GPI00 GPI00 R XTAL_32K_N 5 GPIO1 GPIO1 0 R GPIO2 6 GPIO2 GPIO₂ **FSPIQ** 1 R GPIO3 8 GPIO3 GPIO3 1 R **MTMS** 9 GPIO4 **FSPIHD** R **MTMS** 1 MTDI 10 MTDI GPIO5 **FSPIWP** 1 R 1* 12 G **MTCK MTCK** GPI06 **FSPICLK MTDO** 13 **MTDO** GPIO7 **FSPID** 1 G GPIO8 14 GPIO8 1 GPIO8 GPIO9 15 GPIO9 GPIO9 3 GPIO10 GPIO10 GPIO10 FSPICS0 G 16 1 **GPIO18** 21 GPIO18 GPIO18 0 USB, G **GPIO19** 22 0* **USB GPIO19** GPIO19 G **UORXD** 23 **UORXD** GPIO20 3 **U0TXD** 24 **U0TXD** GPIO21 4

Table 5: IO MUX Pin Functions

Reset

The default configuration of each pin after reset:

- 0 input disabled, in high impedance state (IE = 0)
- 1 input enabled, in high impedance state (IE = 1)
- 2 input enabled, pull-down resistor enabled (IE = 1, WPD = 1)
- 3 input enabled, pull-up resistor enabled (IE = 1, WPU = 1)
- 4 output enabled, pull-up resistor enabled (OE = 1, WPU = 1)
- 0* input disabled, pull-up resistor enabled (IE = 0, WPU = 0, USB_WPU = 1). See details in Notes
- 1* When the value of eFuse bit EFUSE DIS PAD JTAG is
 - 0, input enabled, pull-up resistor enabled (IE = 1, WPU = 1)
 - 1, input enabled, in high impedance state (IE = 1)

We recommend pulling high or low GPIO pins in high impedance state to avoid unnecessary power consumption. You may add pull-up and pull-down resistors in your PCB design referring to Table 11, or enable

internal pull-up and pull-down resistors during software initialization.

Notes

- R These pins have analog functions.
- USB GPIO18 and GPIO19 are USB pins. The pull-up value of a USB pin is controlled by the pin's pull-up value together with USB pull-up value. If any of the two pull-up values is 1, the pin's pull-up resistor will be enabled. The pull-up resistors of USB pins are controlled by USB_SERIAL_JTAG_DP_PULLUP bit.
- G These pins have glitches during power-up. See details in Table 6.

Glitch1 (ns) Low-level glitch

Typical Time Period Pin **MTCK** 5 **MTDO** Low-level glitch 5 GPIO10 Low-level glitch 5 5 **UORXD** Low-level glitch **GPIO18** Pull-up glitch 50000

Table 6: Power-Up Glitches on Pins

Table 7 shows the peripheral input/output signals via GPIO matrix.

Please pay attention to the configuration of the bit GPIO_FUNCn_OEN_SEL:

- GPIO_FUNCn_OEN_SEL = 1: the output enable is controlled by the corresponding bit n of GPIO_ENABLE_REG:
 - GPIO ENABLE REG = 0: output is disabled;
 - GPIO ENABLE REG = 1: output is enabled;
- GPIO_FUNCn_OEN_SEL = 0: use the output enable signal from peripheral, for example SPIQ_oe in the column "Output enable signal when GPIO_FUNCn_OEN_SEL = 0" of Table 7. Note that the signals such as SPIQ_oe can be 1 (1'd1) or 0 (1'd0), depending on the configuration of corresponding peripherals. If it is 1'd1 in the "Output enable signal when GPIO FUNC" OEN SEL = 0", it indicates that once the register GPIO_FUNCn_OEN_SEL is cleared, the output signal is always enabled by default.

Note:

Signals are numbered consecutively, but not all signals are valid.

- For input signals, only 6 ~ 11, 45, 53, 54, 63 ~ 68, 97 ~ 100 are valid.
- For output signals, only 6 ~ 11, 45 ~ 50, 53 ~ 58, 63 ~ 73, 97 ~ 100, 123 ~ 125 are valid.

¹ Low-level glitch: the pin is at a low level during the time period; High-level glitch: the pin is at a high level during the time period; Pull-up glitch: the pin is pulled up during the time period; Pull-down glitch: the pin is pulled down during the time period.

Table 7: Peripheral Signals via GPIO Matrix

Signal No.	Input Signal	Default value	Direct Input through IO MUX	Output Signal	Output enable signal when GPIO_FUNCn_OEN_SEL= 0
0	_	_	_	_	1'd1
1	_	_	_	_	1'd1
2	_	_	_	_	1'd1
3	_	_	_	_	1'd1
4	_	_	_	_	1'd1
5	_	_	_	_	1'd1
6	U0RXD_in	0	yes	U0TXD_out	1'd1
7	U0CTS_in	0	yes	U0RTS_out	1'd1
8	U0DSR_in	0	no	U0DTR_out	1'd1
9	U1RXD_in	0	yes	U1TXD_out	1'd1
10	U1CTS_in	0	yes	U1RTS_out	1'd1
11	U1DSR_in	0	no	U1DTR_out	1'd1
12	_	_	_	_	1'd1
13	_	_	_	_	1'd1
14	_		_	_	1'd1
15	_	_	_	_	1'd1
16	_	_	_	_	1'd1
17	_	_	_	_	1'd1
18	_	_	_	_	1'd1
19	_	_	_	_	1'd1
20	_	_	_	_	1'd1
21	_	_	_	-	1'd1
22	_	_	_	_	1'd1
23	_	_	_	_	1'd1
24	_		_	_	1'd1

Signal No.	Input Signal	Default value	Direct Input through IO MUX	Output Signal	Output enable signal when GPIO_FUNCn_OEN_SEL= 0
25	_	_	_	_	1'd1
26	_	_	_	_	1'd1
27	_	_	_	_	1'd1
28	_	<u> </u>	_	_	1'd1
29	_	_	_	_	1'd1
30	_	_	_	_	1'd1
31	_	_	_	_	1'd1
32	_	_	_	_	1'd1
33	_	_	_	_	1'd1
34	_	_	_	_	1'd1
35	_	_	_	_	1'd1
36	_	_	_	_	1'd1
37	_	_	_	_	1'd1
38	_	—	_	_	1'd1
39	_	_	_	-	1'd1
40	_	_	_	_	1'd1
41	_	_	_	-	1'd1
42	_	_	_	_	1'd1
43	_	_	_	_	1'd1
44	_	_	_	_	1'd1
45	ext_adc_start	0	no	ledc_ls_sig_out0	1'd1
46	_	_	_	ledc_ls_sig_out1	1'd1
47	_	_	_	ledc_ls_sig_out2	1'd1
48	_	_	_	ledc_ls_sig_out3	1'd1
49	_	_	_	ledc_ls_sig_out4	1'd1
50	_	_	_	ledc_ls_sig_out5	1'd1
51	_		no	_	1'd1

Signal

No.	Input Signal	value	through IO MUX	Output Signal	GPIO_FUNCn_OEN_SEL= 0
52	_	_	no	_	1'd1
53	I2CEXT0_SCL_in	1	no	I2CEXT0_SCL_out	I2CEXT0_SCL_oe
54	I2CEXT0_SDA_in	1	no	I2CEXT0_SDA_out	I2CEXTO_SDA_oe
55	_	_	_	gpio_sd0_out	1'd1
56	_	_	_	gpio_sd1_out	1'd1
57	_	_	_	gpio_sd2_out	1'd1
58	_	_	_	gpio_sd3_out	1'd1
59	_	_	_	_	1'd1
60	_	_	_	_	1'd1
61	_	_	_	_	1'd1
62	_	_	_	_	1'd1
63	FSPICLK_in	0	yes	FSPICLK_out_mux	FSPICLK_oe
64	FSPIQ_in	0	yes	FSPIQ_out	FSPIQ_oe
65	FSPID_in	0	yes	FSPID_out	FSPID_oe
66	FSPIHD_in	0	yes	FSPIHD_out	FSPIHD_oe
67	FSPIWP_in	0	yes	FSPIWP_out	FSPIWP_oe
68	FSPICS0_in	0	yes	FSPICS0_out	FSPICS0_oe
69	_	_	_	FSPICS1_out	FSPICS1_oe
70	_	_	_	FSPICS2_out	FSPICS2_oe
71	_	_	_	FSPICS3_out	FSPICS3_oe
72	_	_	_	FSPICS4_out	FSPICS4_oe
73	_	_	_	FSPICS5_out	FSPICS5_oe
74	_	_	_	_	1'd1
75	_	_	_	_	1'd1
76	_	_	_	_	1'd1
77	_	_	_	_	1'd1
78	_	_	_	_	1'd1

Direct Input

Output enable signal when

Default

Signal No.	Input Signal	Default value	through IO MUX	Output Signal	Output enable signal when GPIO_FUNCn_OEN_SEL= 0
79	_	_	_	_	1'd1
80	_	_	_	_	1'd1
81	_	_	_	_	1'd1
82	_	_	_	_	1'd1
83	_	_	_	_	1'd1
84	_	_	_	_	1'd1
85	_	_	_	_	1'd1
86	_	_	_	_	1'd1
87	_	_	_	_	1'd1
88	_	_	_	_	1'd1
89	_	_	_	_	1'd1
90	_	_	_	_	1'd1
91	_	_	_	_	1'd1
92	_	_	_	_	1'd1
93		_	_	_	1'd1
94	_	_	_	_	1'd1
95	_	_	_	_	1'd1
96	_	_	_	_	1'd1
97	sig_in_func_97	0	no	sig_in_func97	1'd1
98	sig_in_func_98	0	no	sig_in_func98	1'd1
99	sig_in_func_99	0	no	sig_in_func99	1'd1
100	sig_in_func_100	0	no	sig_in_func100	1'd1
101	_	_	_	_	1'd1
102	_	_	_	_	1'd1
103	_	_	_	_	1'd1
104	_	_	_	_	1'd1
105	_	_	_	_	1'd1

Direct Input

106 — 107 — 108 —	_ 		_	1'd1
108 —		_		
		1	-	1'd1
		_	_	1'd1
109 —	_	_	_	1'd1
110 —	_	_	_	1'd1
111 —	_	_	_	1'd1
112 —	_	_	_	1'd1
113 —	_	_	_	1'd1
114 —	_	_	_	1'd1
115 —	_	_	_	1'd1
116 —	_	_	_	1'd1
117 —		_	_	1'd1
118 —	_	_	_	1'd1
119 —	_	_	_	1'd1
120 —	_	_	_	1'd1
121 —	_	_	_	1'd1
122 —	_	_	_	1'd1
123 —	_	_	CLK_OUT_out1	1'd1
124 —	_	_	CLK_OUT_out2	1'd1
125 —	_	_	CLK_OUT_out3	1'd1
126 —	_	_	_	1'd1
127 —	-	_	_	1'd1

2.4.2 Serial Peripheral Interface (SPI)

ESP8685 features three SPI interfaces (SPI0, SPI1, and SPI2). SPI0 and SPI1 can only be configured to operate in SPI memory mode, while SPI2 can be configured to operate in both SPI memory and general-purpose SPI modes.

• SPI Memory mode

In SPI memory mode, SPI0 and SPI1 are used to connect the embedded SPI flash, while SPI2 can be used to connect external memory. Data is transferred in bytes. Up to four-line SDR reads and writes are supported. The clock frequency is configurable to a maximum of 120 MHz.

• SPI2 General-purpose SPI (GP-SPI) mode

When SPI2 acts as a general-purpose SPI, it can operate in master and slave modes. SPI2 supports two-line full-duplex communication and single-/two-/four-line half-duplex communication in both master and slave modes. The host's clock frequency is configurable. Data is transferred in bytes. The clock polarity (CPOL) and phase (CPHA) are also configurable. The SPI2 interface can connect to GDMA.

- In master mode, the clock frequency is 80 MHz at most, and the four modes of SPI transfer format are supported.
- In slave mode, the clock frequency is 60 MHz at most, and the four modes of SPI transfer format are also supported.

2.4.3 Universal Asynchronous Receiver Transmitter (UART)

ESP8685 has two UART interfaces, i.e. UARTO and UART1, which support IrDA and asynchronous communication (RS232 and RS485) at a speed of up to 5 Mbps. The UART controller provides hardware flow control (CTS and RTS signals) and software flow control (XON and XOFF). Both UART interfaces connect to GDMA via UHClO, and can be accessed by the GDMA controller or directly by the CPU.

2.4.4 I2C Interface

ESP8685 has an I2C bus interface which is used for I2C master mode or slave mode, depending on your configuration. The I2C interface supports:

- standard mode (100 Kbit/s)
- fast mode (400 Kbit/s)
- up to 800 Kbit/s (constrained by SCL and SDA pull-up strength)
- 7-bit and 10-bit addressing mode
- double addressing mode
- 7-bit broadcast address

You can configure instruction registers to control the I2C interface for more flexibility.

2.4.5 I2S Interface

ESP8685 includes a standard I2S interface. This interface can operate as a master or a slave in full-duplex mode or half-duplex mode, and can be configured for 8-bit, 16-bit, 24-bit, or 32-bit serial communication. BCK clock frequency, from 10 kHz up to 40 MHz, is supported.

The I2S interface supports TDM PCM, TDM MSB alignment, TDM LSB alignment, TDM Phillips, and PDM TX interface. It connects to the GDMA controller.

The Remote Control Peripheral (RMT) supports two channels of infrared remote transmission and two channels of infrared remote reception. By controlling pulse waveform through software, it supports various infrared and other single wire protocols. All four channels share a 192×32 -bit memory block to store transmit or receive waveform.

2.4.7 LED PWM Controller

The LED PWM controller can generate independent digital waveform on six channels. The LED PWM controller:

- can generate digital waveform with configurable periods and duty cycle. The accuracy of duty cycle can be
 up to 18 bits.
- has multiple clock sources, including APB clock and external main crystal clock.
- can operate when the CPU is in Light-sleep mode.
- supports gradual increase or decrease of duty cycle, which is useful for the LED RGB color-gradient generator.

2.4.8 General DMA Controller

ESP8685 has a general DMA controller (GDMA) with six independent channels, i.e. three transmit channels and three receive channels. These six channels are shared by peripherals with DMA feature. The GDMA controller implements a fixed-priority scheme among these channels.

The GDMA controller controls data transfer using linked lists. It allows peripheral-to-memory and memory-to-memory data transfer at a high speed. All channels can access internal RAM.

Peripherals on ESP8685 with DMA feature are SPI2, UHCI0, I2S, AES, SHA, and ADC.

2.4.9 USB Serial/JTAG Controller

ESP8685 integrates a USB Serial/JTAG controller. This controller has the following features:

- USB 2.0 full speed compliant, capable of up to 12 Mbit/s transfer speed (Note that this controller does not support the faster 480 Mbit/s high-speed transfer mode)
- · CDC-ACM virtual serial port and JTAG adapter functionality
- programming embedded/external flash
- CPU debugging with compact JTAG instructions
- a full-speed USB PHY integrated in the chip

2.4.10 TWAI® Controller

ESP8685 has a TWAI® controller with the following features:

- compatible with ISO 11898-1 protocol (CAN Specification 2.0)
- standard frame format (11-bit ID) and extended frame format (29-bit ID)
- bit rates from 1 Kbit/s to 1 Mbit/s
- multiple modes of operation: Normal, Listen Only, and Self-Test (no acknowledgment required)
- 64-byte receive FIFO

- acceptance filter (single and dual filter modes)
- error detection and handling: error counters, configurable error interrupt threshold, error code capture, arbitration lost capture

2.5 Radio and Wi-Fi

ESP8685 radio consists of the following blocks:

- 2.4 GHz receiver
- 2.4 GHz transmitter
- bias and regulators
- balun and transmit-receive switch
- · clock generator

2.5.1 2.4 GHz Receiver

The 2.4 GHz receiver demodulates the 2.4 GHz RF signal to quadrature baseband signals and converts them to the digital domain with two high-resolution, high-speed ADCs. To adapt to varying signal channel conditions, ESP8685 integrates RF filters, Automatic Gain Control (AGC), DC offset cancelation circuits, and baseband filters.

2.5.2 2.4 GHz Transmitter

The 2.4 GHz transmitter modulates the quadrature baseband signals to the 2.4 GHz RF signal, and drives the antenna with a high-powered CMOS power amplifier. The use of digital calibration further improves the linearity of the power amplifier.

Additional calibrations are integrated to cancel any radio imperfections, such as:

- carrier leakage
- I/Q amplitude/phase matching
- baseband nonlinearities
- RF nonlinearities
- antenna matching

These built-in calibration routines reduce the cost, time, and specialized equipment required for product testing.

2.5.3 Clock Generator

The clock generator produces quadrature clock signals of 2.4 GHz for both the receiver and the transmitter. All components of the clock generator are integrated into the chip, including inductors, varactors, filters, regulators and dividers.

The clock generator has built-in calibration and self-test circuits. Quadrature clock phases and phase noise are optimized on chip with patented calibration algorithms which ensure the best performance of the receiver and the transmitter.

2.5.4 Wi-Fi Radio and Baseband

ESP8685 Wi-Fi radio and baseband support the following features:

- 802.11b/g/n
- 802.11n MCS0-7 that supports 20 MHz and 40 MHz bandwidth
- 802.11n MCS32
- 802.11n 0.4 μs guard interval
- data rate up to 150 Mbps
- RX STBC (single spatial stream)
- adjustable transmitting power
- antenna diversity
 ESP8685 supports antenna diversity with an external RF switch. This switch is controlled by one or more
 GPIOs, and used to select the best antenna to minimize the effects of channel imperfections.

2.5.5 Wi-Fi MAC

ESP8685 implements the full 802.11 b/g/n Wi-Fi MAC protocol. It supports the Basic Service Set (BSS) STA and SoftAP operations under the Distributed Control Function (DCF). Power management is handled automatically with minimal host interaction to minimize the active duty period.

ESP8685 Wi-Fi MAC applies the following low-level protocol functions automatically:

- 4 × virtual Wi-Fi interfaces
- infrastructure BSS in Station mode, SoftAP mode, Station + SoftAP mode, and promiscuous mode
- RTS protection, CTS protection, Immediate Block ACK
- fragmentation and defragmentation
- TX/RX A-MPDU, TX/RX A-MSDU
- transmit opportunity (TXOP)
- Wi-Fi multimedia (WMM)
- GCMP, CCMP, TKIP, WAPI, WEP, BIP, WPA2-PSK/WPA2-Enterprise, and WPA3-PSK/WPA3-Enterprise
- automatic beacon monitoring (hardware TSF)
- 802.11mc FTM

2.5.6 Networking Features

Espressif provides libraries for TCP/IP networking, ESP-WIFI-MESH networking, and other networking protocols over Wi-Fi. TLS 1.0, 1.1 and 1.2 is also supported.

2.6 Bluetooth LE

ESP8685 includes a Bluetooth Low Energy subsystem that integrates a hardware link layer controller, an RF/modem block and a feature-rich software protocol stack. It supports the core features of Bluetooth 5 and Bluetooth mesh.

2.6.1 Bluetooth LE Radio and PHY

Bluetooth Low Energy radio and PHY in ESP8685 support:

- 1 Mbps PHY
- 2 Mbps PHY for higher data rates
- coded PHY for longer range (125 Kbps and 500 Kbps)
- listen before talk (LBT), implemented in hardware
- antenna diversity with an external RF switch
 This switch is controlled by one or more GPIOs, and used to select the best antenna to minimize the effects of channel imperfections.

2.6.2 Bluetooth LE Link Layer Controller

Bluetooth Low Energy Link Layer Controller in ESP8685 supports:

- · LE advertising extensions, to enhance broadcasting capacity and broadcast more intelligent data
- multiple advertisement sets
- simultaneous advertising and scanning
- multiple connections in simultaneous central and peripheral roles
- adaptive frequency hopping and channel assessment
- LE channel selection algorithm #2
- connection parameter update
- high duty cycle non-connectable advertising
- LE privacy 1.2
- LE data packet length extension
- link layer extended scanner filter policies
- low duty cycle directed advertising
- link layer encryption
- LE Ping

2.7 Low Power Management

With the use of advanced power-management technologies, ESP8685 can switch between different power modes:

- Active mode: CPU and chip radio are powered on. The chip can receive, transmit, or listen.
- Modem-sleep mode: The CPU is operational and the clock speed can be reduced. Wi-Fi base band, Bluetooth LE base band, and radio are disabled, but Wi-Fi and Bluetooth LE connection can remain active.
- Light-sleep mode: The CPU is paused. Any wake-up events (MAC, host, RTC timer, or external interrupts) will wake up the chip. Wi-Fi and Bluetooth LE connection can remain active.
- Deep-sleep mode: CPU and most peripherals are powered down. Only the RTC memory is powered on. Wi-Fi connection data are stored in the RTC memory.

For power consumption in different power modes, please refer to Table 14.

2.8 Timers

2.8.1 General Purpose Timers

ESP8685 is embedded with two 54-bit general-purpose timers, which are based on 16-bit prescalers and 54-bit auto-reload-capable up/down-timers.

The timers' features are summarized as follows:

- a 16-bit clock prescaler, from 1 to 65536
- a 54-bit time-base counter programmable to be incrementing or decrementing
- able to read real-time value of the time-base counter
- halting and resuming the time-base counter
- programmable alarm generation
- level interrupt generation

2.8.2 System Timer

ESP8685 integrates a 52-bit system timer, which has two 52-bit counters and three comparators. The system timer has the following features:

- counters with a fixed clock frequency of 16 MHz
- three types of independent interrupts generated according to alarm value
- two alarm modes: target mode and period mode
- 52-bit target alarm value and 26-bit periodic alarm value
- automatic reload of counter value
- counters can be stalled if the CPU is stalled or in OCD mode

2.8.3 Watchdog Timers

ESP8685 contains three watchdog timers: one in each of the two timer groups (called Main System Watchdog Timers, or MWDT) and one in the RTC module (called the RTC Watchdog Timer, or RWDT).

During the flash boot process, RWDT and the MWDT in timer group 0 (TIMG0) are enabled automatically in order to detect and recover from booting errors.

Watchdog timers have the following features:

- four stages, each with a programmable timeout value. Each stage can be configured, enabled and disabled separately
- interrupt, CPU reset, or core reset for MWDT upon expiry of each stage; interrupt, CPU reset, core reset, or system reset for RWDT upon expiry of each stage
- 32-bit expiry counter
- write protection, to prevent RWDT and MWDT configuration from being altered inadvertently
- flash boot protection
 If the boot process from an SPI flash does not complete within a predetermined period of time, the watchdog will reboot the entire main system.

2.9 Cryptographic Hardware Accelerators

ESP8685 is equipped with hardware accelerators of general algorithms, such as AES-128/AES-256 (FIPS PUB 197), ECB/CBC/OFB/CFB/CTR (NIST SP 800-38A), SHA1/SHA224/SHA256 (FIPS PUB 180-4), RSA3072, and ECC. The chip also supports independent arithmetic, such as Big Integer Multiplication and Big Integer Modular Multiplication. The maximum operation length for RSA and Big Integer Modular Multiplication is 3072 bits. The maximum factor length for Big Integer Multiplication is 1536 bits.

Physical Security Features 2.10

- Transparent external flash encryption (AES-XTS algorithm) with software inaccessible key prevents unauthorized readout of your application code or data.
- Secure boot feature uses a hardware root of trust to ensure only signed firmware (with RSA-PSS signature) can be booted.
- HMAC module can use a software inaccessible MAC key to generate MAC signatures for identity verification and other purposes.
- · Digital Signature module can use a software inaccessible secure key to generate RSA signatures for identity verification.
- · World Controller provides two running environments for software. All hardware and software resources are sorted to two groups, and placed in either secure or general world. The secure world cannot be accessed by hardware in the general world, thus establishing a security boundary.

2.11 **Peripheral Pin Configurations**

Table 8: Peripheral Pin Configurations

Interface	Signal	Pin	Function
ADC	ADC1_CH0	XTAL_32K_P	Two 12-bit SAR ADCs
	ADC1_CH1	XTAL_32K_N	
	ADC1_CH2	GPIO2	
	ADC1_CH3	GPIO3	
	ADC1_CH4	MTMS	
	ADC2_CH0	MTDI	
JTAG	MTDI	MTDI	JTAG for software debugging
	MTCK	MTCK	
	MTMS	MTMS	
	MTDO	MTDO	
UART	U0RXD_in	Any GPIO pins	Two UART channels with hardware flow control
	U0CTS_in		and GDMA
	U0DSR_in		
	U0TXD_out		
	U0RTS_out		
	U0DTR_out		
	U1RXD_in		
	U1CTS_in		
	U1DSR_in		

Interface	Signal	Pin	Function
	U1TXD_out		
	U1RTS_out		
	U1DTR_out		
I2C	I2CEXT0_SCL_in	Any GPIO pins	One I2C channel in slave or master mode
	I2CEXTO_SDA_in		
	I2CEXT1_SCL_in		
	I2CEXT1_SDA_in		
	I2CEXTO_SCL_out		
	I2CEXTO_SDA_out		
	I2CEXT1_SCL_out		
	I2CEXT1_SDA_out		
LED PWM	ledc_ls_sig_out0~5	Any GPIO pins	Six independent PWM channels
I2S	I2S0O_BCK_in	Any GPIO pins	Stereo input and output from/to the audiocodec
	I2S_MCLK_in		
	I2SO_WS_in		
	I2SI_SD_in		
	I2SI_BCK_in		
	I2SI_WS_in		
	I2SO_BCK_out		
	I2S_MCLK_out		
	I2SO_WS_out		
	I2SO_SD_out		
	I2SI_BCK_out		
	I2SI_WS_out		
	I2SO_SD1_out		
SPI2	FSPICLK_in/_out_mux	Any GPIO pins	Master mode and slave mode of SPI, Dual
	FSPICS0_in/_out		SPI, Quad SPI, and QPI
	FSPICS1~5_out		Connection to external flash, RAM, and
	FSPID_in/_out		other SPI devices
	FSPIQ_in/_out		Four modes of SPI transfer format
	FSPIWP_in/_out		Configurable SPI frequency
	FSPIHD_in/_out		64-byte FIFO or GDMA buffer
Remote Control	RMT_SIG_IN0~1	Any GPIO pins	Two channels for an IR transceiver of various
Peripheral	RMT_SIG_OUT0~1		waveforms
USB Serial/JTAG	USB_D+	GPIO19	USB-to-serial converter, and USB-to-JTAG
	USB_D-	GPIO18	converter
TWAI	twai_rx	Any GPIO pins	Compatible with ISO 11898-1 protocol
	twai_tx		
	twai_bus_off_on		
	twai_clkout		

3. **Electrical Characteristics**

3.1 **Absolute Maximum Ratings**

Stresses beyond the absolute maximum ratings listed in the table below may cause permanent damage to the device. These are stress ratings only, and do not refer to the functional operation of the device.

Table 9: Absolute Maximum Ratings

Symbol		Parameter	Min	Max	Unit
VDDA, VDD3P3, VI	DD3P3_RTC,	Voltage applied to power supply pins	-0.3	3.6	\/
VDD3P3_CPU		per power domain	-0.3	3.0	V
T_{STORE}		Storage temperature	-40	150	°C

Recommended Operating Conditions 3.2

Table 10: Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Unit
VDDA, VDD3P3	Voltage applied to power supply	3.0	3.3	3.6	V
VDD3P3_RTC	pins per power domain	3.0	3.3	3.0	\ \ \
VDD3P3_CPU ²	Voltage applied to power supply pin	3.0	3.3	3.6	V
I_{VDD}^3	Current delivered by external power supply	0.5	_	_	А
T_A	Operating ambient temperature	-40	_	105	°C

¹ For more information, please refer to Section 1.3 *Power Scheme*.

3.3 DC Characteristics (3.3 V, 25 °C)

Table 11: DC Characteristics (3.3 V, 25 °C)

Symbol	Parameter	Min	Тур	Max	Unit
C_{IN}	Pin capacitance	_	2	_	рF
V_{IH}	High-level input voltage	$0.75 \times VDD^1$	_	VDD ¹ + 0.3	V
V_{IL}	Low-level input voltage	-0.3	_	$0.25 \times VDD^1$	V
$ I_{IH} $	High-level input current	_	_	50	nA
$ I_{IL} $	Low-level input current	_	_	50	nA
V_{OH}^2	High-level output voltage	$0.8 \times VDD^1$	_	_	V
V_{OL}^2	Low-level output voltage	_	_	$0.1 \times VDD^1$	V
1.	High-level source current (VDD1= 3.3 V,		40		mA
$ _{OH}$	$V_{OH} >= 2.64 \text{ V, PAD_DRIVER} = 3)$		40		IIIA
1	Low-level sink current (VDD 1 = 3.3 V, V $_{OL}$ =		28		mA
$ I_{OL} $	0.495 V, PAD_DRIVER = 3)	_	20	_	ША
R_{PU}	Pull-up resistor		45	_	kΩ
R_{PD}	Pull-down resistor	_	45		kΩ
V_{IH_nRST}	Chip reset release voltage	$0.75 \times VDD^1$		VDD ¹ + 0.3	V

² If you use a single power supply, the recommended output current is 500 mA or more.

Table 11 - cont'd from previous page

Symbol	Parameter	Min	Тур	Max	Unit
V_{IL_nRS}	Chip reset voltage	-0.3		0.25 × VDD ¹	V

¹ VDD is the I/O voltage for a particular power domain of pins.

3.4 ADC Characteristics

Table 12: ADC Characteristics

Symbol	Parameter	Min	Max	Unit
DNL (Differential nonlinearity) ¹	ADC connected to an external	7	Max 7 12 100 750 1050 1300 2500	LSB
DIVE (Differential Horilineanty)	100 nF capacitor; DC signal input;	-7		LOD
INL (Integral nonlinearity)	ambient temperature at 25 °C;	-7 7 -12 12 100 0 750 0 1050 0 1300	LSB	
inc (integral normineanty)	Wi-Fi off	-12	7 12 100 750 1050 1300	LOD
Sampling rate	_	_	100	Ksps
	ATTEN0	0	750	mV
Effective Dange	ATTEN1	0	1050	mV
Effective Range	ATTEN2	0	1300	mV
	ATTEN3	0	12 100 750 1050 1300	mV

¹ To get better DNL results, you can sample multiple times and apply a filter, or calculate the average value.

Current Consumption

The current consumption measurements are taken with a 3.3 V supply at 25 °C of ambient temperature at the RF port. All transmitters' measurements are based on a 100% duty cycle.

Table 13: Current Consumption Depending on RF Modes

Work mode	Descrip	Description	
	•		(mA)
		802.11b, 1 Mbps, @21 dBm	335
	TV	802.11g, 54 Mbps, @19 dBm	285
Active (DE working)	TX	802.11n, HT20, MCS7, @18.5 dBm	276
Active (RF working)		802.11n, HT40, MCS7, @18.5 dBm	278
	DV	802.11b/g/n, HT20	84
	RX	802.11n, HT40	87

Table 14: Current Consumption Depending on Work Modes

Work mode	Description		Тур	Unit
Modem-sleep ^{1, 2}	The CPU is 160 MHz		20	mA
Modern-Sieep	powered on ³	80 MHz	15	mA
Light-sleep	_		130	μΑ
Deep-sleep	RTC timer + R	RTC timer + RTC memory		μΑ
Power off	CHIP_PU is se	t to low level, the chip is powered off	1	μΑ

 $^{^{2}}$ V_{OH} and V_{OL} are measured using high-impedance load.

- ¹ The current consumption figures in Modem-sleep mode are for cases where the CPU is powered on and the cache idle.
- ² When Wi-Fi is enabled, the chip switches between Active and Modem-sleep modes. Therefore, current consumption changes accordingly.
- ³ In Modem-sleep mode, the CPU frequency changes automatically. The frequency depends on the CPU load and the peripherals used.

3.6 Reliability

Table 15: Reliability Qualifications

Test Item	Test Conditions	Test Standard
HTOL (High Temperature	125 °C, 1000 hours	JESD22-A108
Operating Life)	123 G, 1000 110015	JL3D22-A100
ESD (Electro-Static	HBM (Human Body Mode)1± 2000 V	JESD22-A114
Discharge Sensitivity)	CDM (Charge Device Mode) ² ± 500 V	JESD22-C101F
Latabura	Current trigger ± 200 mA	JESD78
Latch up	Voltage trigger 1.5 \times VDD _{max}	JLODIO

¹ JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.

3.7 Wi-Fi Radio

Table 16: Wi-Fi Frequency

Parameter	Min	Typ	Max
	(MHz)	(MHz)	(MHz)
Center frequency of operating channel	2412	_	2484

3.7.1 Wi-Fi RF Transmitter (TX) Specifications

Table 17: TX Power with Spectral Mask and EVM Meeting 802.11 Standards

Rate	Min	Тур	Max
nate	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps		21.0	_
802.11b, 11 Mbps		21.0	_
802.11g, 6 Mbps		21.0	
802.11g, 54 Mbps	_	19.0	_
802.11n, HT20, MCS0		20.0	
802.11n, HT20, MCS7	_	18.5	_
802.11n, HT40, MCS0		20.0	_
802.11n, HT40, MCS7	_	18.5	_

² JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

Table 18: TX EVM Test

Rate	Min	Тур	SL ¹
nate	(dB)	(dB)	(dB)
802.11b, 1 Mbps, @21 dBm	_	-24.5	-10
802.11b, 11 Mbps, @21 dBm	_	-24.5	-10
802.11g, 6 Mbps, @21 dBm		-21.0	- 5
802.11g, 54 Mbps, @19 dBm	_	-27.0	-25
802.11n, HT20, MSC0, @20 dBm	_	-22.5	- 5
802.11n, HT20, MSC7, @18.5 dBm		-28.5	-27
802.11n, HT40, MSC0, @20 dBm	_	-22.5	- 5
802.11n, HT40, MSC7, @18.5 dBm		-28.5	-27

¹ SL stands for standard limit value.

3.7.2 Wi-Fi RF Receiver (RX) Specifications

Table 19: RX Sensitivity

Data	Min	Тур	Max
Rate	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps	_	-98.4	_
802.11b, 2 Mbps	_	-96.0	_
802.11b, 5.5 Mbps	_	-93.0	_
802.11b, 11 Mbps	_	-88.6	
802.11g, 6 Mbps		-93.8	_
802.11g, 9 Mbps	_	-92.2	_
802.11g, 12 Mbps	_	-91.0	_
802.11g, 18 Mbps	_	-88.4	_
802.11g, 24 Mbps	_	-85.8	_
802.11g, 36 Mbps	_	-82.0	_
802.11g, 48 Mbps	_	-78.0	_
802.11g, 54 Mbps	_	-76.6	_
802.11n, HT20, MCS0		-93.6	
802.11n, HT20, MCS1	_	-90.8	_
802.11n, HT20, MCS2	_	-88.4	_
802.11n, HT20, MCS3	_	-85.0	_
802.11n, HT20, MCS4	_	-81.8	_
802.11n, HT20, MCS5	_	-77.8	_
802.11n, HT20, MCS6	_	-76.0	_
802.11n, HT20, MCS7	_	-74.8	_
802.11n, HT40, MCS0	_	-90.0	_
802.11n, HT40, MCS1	_	-88.0	_
802.11n, HT40, MCS2	_	-85.2	_
802.11n, HT40, MCS3	_	-82.0	
802.11n, HT40, MCS4	_	-78.8	

Table 19 - cont'd from previous page

Dete	Min	Тур	Max
Rate	(dBm)	(dBm)	(dBm)
802.11n, HT40, MCS5	_	-74.6	_
802.11n, HT40, MCS6	_	-73.0	_
802.11n, HT40, MCS7	_	-71.4	_

Table 20: Maximum RX Level

Rate	Min	Тур	Max
nate	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps	_	5	
802.11b, 11 Mbps	_	5	_
802.11g, 6 Mbps	_	5	
802.11g, 54 Mbps	_	0	_
802.11n, HT20, MCS0	_	5	_
802.11n, HT20, MCS7		0	_
802.11n, HT40, MCS0		5	_
802.11n, HT40, MCS7	_	0	

Table 21: RX Adjacent Channel Rejection

Rate	Min (dB)	Typ (dB)	Max (dB)
802.11b, 1 Mbps	(a <i>b</i>)	35	(a <i>b</i>)
802.11b, 11 Mbps		35	
802.11g, 6 Mbps		31	_
802.11g, 54 Mbps	_	20	_
802.11n, HT20, MSC0	_	31	_
802.11n, HT20, MSC7	_	16	
802.11n, HT40, MSC0	_	25	
802.11n, HT40, MSC7	_	11	_

3.8 Bluetooth LE Radio

Table 22: Bluetooth LE Frequency

Parameter	Min	Typ	Max
	(MHz)	(MHz)	(MHz)
Center frequency of operating channel	2402		2480

Bluetooth LE RF Transmitter (TX) Specifications 3.8.1

Table 23: Transmitter Characteristics - Bluetooth LE 1 Mbps

Parameter	Description	Min	Тур	Max	Unit
RF transmit power	RF power control range	-27.00	0	18.00	dBm
	Gain control step	_	3.00	_	dB
	$ \text{Max} _{n=0,\;1,\;2,\;k}$	_	17.00	_	kHz
Carrier frequency offset and drift	$Max \left f_0 - f_n \right $		1.75	_	kHz
Carrier frequency offset and drift	$ Max f_{n-1} f_{n-5} $		1.46	_	kHz
	$ f_1 - f_0 $	_	0.80	_	kHz
	$\Delta f 1_{avg}$		250.00	_	kHz
Modulation characteristics	Min Δ $f2_{\rm max}$ (for at least		190.00		kHz
iviodulation characteristics	99.9% of all Δ $f2_{\text{max}}$)		100.00		IXI IZ
	$\Delta~f2_{\rm avg}/\Delta~f1_{\rm avg}$	_	0.83		
	± 2 MHz offset		-37.62	_	dBm
In-band spurious emissions	± 3 MHz offset	_	-41.95	_	dBm
	± > 3 MHz offset		-44.48	_	dBm

Table 24: Transmitter Characteristics - Bluetooth LE 2 Mbps

Parameter	Description	Min	Тур	Max	Unit
DE transmit navyer	RF power control range	-27.00	0	18.00	dBm
RF transmit power	Gain control step		3.00	_	dB
			20.80	_	kHz
Carrier frequency offset and drift	$Max f_0 - f_n $		1.30	_	kHz
Carrier frequency offset and drift	$Max \left f_{n-} f_{n-5} \right $		1.33	_	kHz
	$ f_1-f_0 $	_	0.70		kHz
	$\Delta f1_{avg}$		498.00		kHz
Modulation characteristics	Min Δ $f2_{\rm max}$ (for at least	_	430.00		kHz
	99.9% of all Δ $f2_{\text{max}}$)				
	$\Delta f 2_{ m avg}/\Delta f 1_{ m avg}$	_	0.93		_
In-band spurious emissions	± 4 MHz offset		-43.55		dBm
	± 5 MHz offset		-45.26	_	dBm
	± > 5 MHz offset		-45.26		dBm

Table 25: Transmitter Characteristics - Bluetooth LE 125 Kbps

Parameter	Description	Min	Тур	Max	Unit
RF transmit power	RF power control range	-27.00	0	18.00	dBm
	Gain control step	_	3.00		dB
Carrier frequency offset and drift		_	17.50	_	kHz
	$ Max f_0 - f_n $	_	0.45	_	kHz
	$ f_{n}-f_{n-3} $		0.70		kHz
	$ f_0-f_3 $	_	0.30	_	kHz

Table 25 - cont'd from previous page

Parameter	Description	Min	Тур	Max	Unit
	$\Delta f 1_{ ext{avg}}$		250.00		kHz
Modulation characteristics	Min Δ $f1_{\rm max}$ (for at least 99.9% of all Δ $f2_{\rm max}$)		235.00	_	kHz
	± 2 MHz offset		-37.90	_	dBm
In-band spurious emissions	± 3 MHz offset	_	-41.00	_	dBm
	± > 3 MHz offset		-42.50	_	dBm

Table 26: Transmitter Characteristics - Bluetooth LE 500 Kbps

Parameter	Description	Min	Тур	Max	Unit
RF transmit power	RF power control range	-27.00	0	18.00	dBm
ni transmit power	Gain control step		3.00	_	dB
	$ \text{Max} _{n=0,1,2,k}$		17.00	_	kHz
Carrier frequency offset and drift	$Max f_0 - f_n $		0.88	_	kHz
Carrier frequency offset and drift	$ f_n - f_{n-3} $		1.00	_	kHz
	$ f_0 - f_3 $		0.20		kHz
	$\Delta f 2_{avg}$		208.00		kHz
Modulation characteristics	Min Δ $f2_{\rm max}$ (for at least		190.00		kHz
	99.9% of all Δ $f2_{ ext{max}}$)		190.00	_	NI 1Z
	± 2 MHz offset		-37.90		dBm
In-band spurious emissions	± 3 MHz offset		-41.30	_	dBm
	± > 3 MHz offset	_	-42.80		dBm

3.8.2 Bluetooth LE RF Receiver (RX) Specifications

Table 27: Receiver Characteristics - Bluetooth LE 1 Mbps

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	_	_	-97	_	dBm
Maximum received signal @30.8% PER	_	_	5	_	dBm
Co-channel C/I	_	_	8	_	dB
	F = F0 + 1 MHz	_	-3	_	dB
	F = F0 – 1 MHz	_	-4	_	dB
	F = F0 + 2 MHz	_	-29	_	dB
Adjacent channel selectivity C/I	F = F0 – 2 MHz	_	-31	_	dB
Adjacent channel selectivity C/I	F = F0 + 3 MHz	_	-33	_	dB
	F = F0 - 3 MHz	_	-27	_	dB
	F ≥ F0 + 4 MHz	_	-29	_	dB
	$F \le F0 - 4 MHz$	_	-38	_	dB
Image frequency	_		-29	_	dB
Adjacent channel to image frequency	$F = F_{image} + 1 \text{ MHz}$	_	-41	_	dB
Adjacent charmer to image frequency	$F = F_{image} - 1 \text{ MHz}$		-33	_	dB

Table 27 - cont'd from previous page

Parameter	Description	Min	Тур	Max	Unit
	30 MHz ~ 2000 MHz	_	- 5	_	dBm
Out-of-band blocking performance	2003 MHz ~ 2399 MHz	_	-18		dBm
Out-of-balld blocking performance	2484 MHz ~ 2997 MHz	_	-15	_	dBm
	3000 MHz ~ 12.75 GHz	_	- 5		dBm
Intermodulation	_		-30	_	dBm

Table 28: Receiver Characteristics - Bluetooth LE 2 Mbps

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	_	_	-93	_	dBm
Maximum received signal @30.8% PER	_	_	3	_	dBm
Co-channel C/I	_	_	10	_	dB
	F = F0 + 2 MHz	_	-7	_	dB
	F = F0 – 2 MHz	_	-7	_	dB
	F = F0 + 4 MHz	_	-28	_	dB
Adjacent channel selectivity C/I	F = F0 - 4 MHz		-26		dB
Adjacent channel selectivity C/I	F = F0 + 6 MHz	_	-26	_	dB
	F = F0 – 6 MHz		-27	_	dB
	$F \ge F0 + 8 MHz$	_	-29	_	dB
	$F \le F0 - 8 MHz$		-28		dB
Image frequency	_		-28	_	dB
Adjacent channel to image frequency	$F = F_{image} + 2 MHz$		-26	_	dB
Adjacent channel to image frequency	$F = F_{image} - 2 \text{ MHz}$	_	-7	_	dB
	30 MHz ~ 2000 MHz		- 5	_	dBm
Out-of-band blocking performance	2003 MHz ~ 2399 MHz	_	-19	_	dBm
	2484 MHz ~ 2997 MHz	_	-16	_	dBm
	3000 MHz ~ 12.75 GHz	_	- 5	_	dBm
Intermodulation	_		-29		dBm

Table 29: Receiver Characteristics - Bluetooth LE 125 Kbps

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	_		-105	_	dBm
Maximum received signal @30.8% PER	_	_	5		dBm
Co-channel C/I	_		3	_	dB
Adjacent channel selectivity C/I	F = F0 + 1 MHz	_	-6	_	dB
	F = F0 - 1 MHz	_	-6		dB
	F = F0 + 2 MHz	_	-33		dB
	F = F0 - 2 MHz	_	-43		dB
Adjacent channel selectivity 0/1	F = F0 + 3 MHz	_	-37	_	dB
	F = F0 - 3 MHz		-47		dB
	$F \ge F0 + 4 \text{ MHz}$		-40		dB
	$F \le F0 - 4 MHz$	_	– 50	_	dB

Table 29 - cont'd from previous page

Parameter	Description	Min	Тур	Max	Unit
Image frequency	_	_	-40	_	dB
Adjacent channel to image frequency	$F = F_{image} + 1 \text{ MHz}$	_	-50	_	dB
Adjacent channel to image frequency	$F = F_{image} - 1 \text{ MHz}$	_	-37	_	dB

Table 30: Receiver Characteristics - Bluetooth LE 500 Kbps

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	_	_	-100	_	dBm
Maximum received signal @30.8% PER	_	_	5	_	dBm
Co-channel C/I	_	_	3	_	dB
	F = F0 + 1 MHz	_	-2	_	dB
	F = F0 – 1 MHz	_	-3	_	dB
	F = F0 + 2 MHz	_	-32	_	dB
Adjacent channel selectivity C/I	F = F0 – 2 MHz	_	-33	_	dB
Adjacent channel selectivity C/1	F = F0 + 3 MHz	_	-23	_	dB
	F = F0 – 3 MHz	_	-40	_	dB
	$F \ge F0 + 4 MHz$	_	-34	_	dB
	$F \le F0 - 4 MHz$	_	-44	_	dB
Image frequency	_	_	-34	_	dB
A diament also and the impact for any and a	$F = F_{image} + 1 \text{ MHz}$	_	-46	_	dB
Adjacent channel to image frequency	$F = F_{image} - 1 \text{ MHz}$		-23		dB

4. Package Information

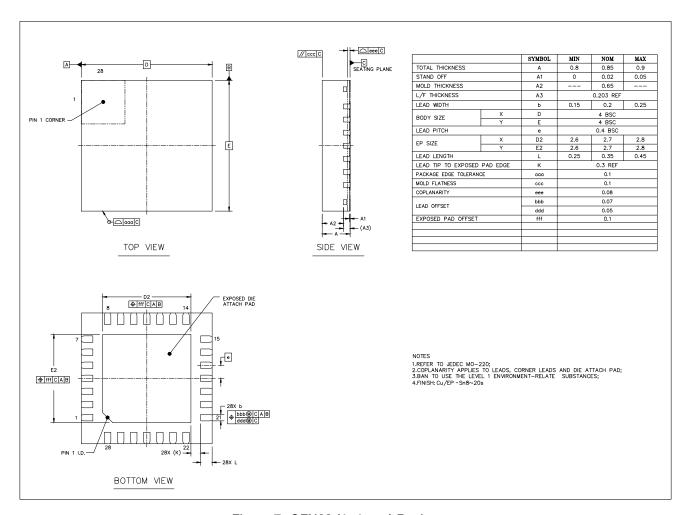


Figure 7: QFN28 (4×4 mm) Package

Note:

- All dimensions are in millimeters.
- For information about tape, reel, and product marking, please refer to Espressif Chip-Packing Information.

Revision History

Date	Version	Release Notes
2021-07-30	v0.5	Preliminary release

Solutions, Documentation and Legal Information

Must-Read Documents

- ESP-IDF Programming Guide
- Certificates
- Notification Subscription

Sales and Technical Support

- Sales Questions
- Technical Inquiries
- Get Samples

Developer Zone

- ESP32 Forum
- GitHub

- Courses
- Videos

Products

- SoCs
- <u>Modules</u>
- DevKits

Must-Have Resources

- SDKs and Demos
- <u>APPs</u>
- Tools
- <u>AT</u>

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice.

ALL THIRD PARTY'S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2021 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF System on a Chip - SoC category:

Click to view products by Espressif manufacturer:

Other Similar products are found below:

BCM20737A1KML2G BCM43236BKMLG EM06ELA-512-SGAS CYBL10463-56LQXI CYBL10562-56LQXI CYBL10563-68FLXIT

ATBTLC1000A-UU-T EC25AUFA-MINIPCIE BCM43242KFFBG BCM20707UA1KFFB1G ATWILC1000B-UU-T BCM4322KFBGH

ETRX3DVK357 88W8801-B0-NMDC/AZ EC25VFA-MINIPCIE EC25JFA-MINIPCIE EC25MXGA-MINIPCIE EC25AFXGA-MINIPCIE

EC25AUXGA-MINIPCIE EC25AUTFA-MINIPCIE EC25AFFA-MINIPCIE EP06ALA-512-SGAD EM06ALA-512-SGAD EM12GPA-512
SGAD EC25EUGA-MINIPCIE ESP32-S2FN4R2 TLSR8367EP16 EC25AFA-MINIPCIE CYBL10463-56LQXIT CC2511F32RSPR AX
SFEU-API-1-01-TB05 NRF51422-CFAC-R NRF51822-CDAB-R XR1015-QH-0G00 NCH-RSL10-101Q48-ABG BLUENRG-232

AWR1642ABIGABLQ1 ESP32-D0WD ESP8266EX CYBL10561-56LQXI ATWINC1500B-MU-Y DA14531-00000FX2 ESP32-C3FH4

ESP32-C3FN4 ESP32-C3 ESP32-D0WDQ6 ESP32-D0WDQ6-V3 ESP32-D0WD-V3 ESP32-PICO-V3 ESP32-PICO-V3-02