Description

The Smart Power Relay E-1048-81.- is a remotely controllable electronic load disconnecting relay with three functions in a single unit:

- electronic relay
- electronic overcurrent protection
- status indication

The 7 pin INLINE version is designed for use with various E-T-A terminal blocks, e. g. 17-P10-Si. A choice of current ratings is available from 1 A through 10 A . An operating voltage range of DC $9 . . .32 \mathrm{~V}$ allows the connection of DC 12 V and DC 24 V loads.

In order to switch and protect loads remotely, it has until now been necessary to connect several discreet components together:

- an electro-mechanic relay, control cable and integral contact to close the load circuit
- an additional protective element (circuit breaker or fuse) for cable or equipment protection
- a device for current measurement (shunt)

Now type E-1048-81. combines all these functions in a single unit, thus minimising the number of connections in the circuit and thereby reducing the risk of failures.

Applications

Type E-1048-8l. is suited to all applications with DC 12 V or DC 24 V circuits, where magnetic valves, motors or lamp loads have to be switched, protected or monitored:

- road vehicles (utility vehicles, buses, special vehicles)
- rail vehicles
- marine industry (ships, boats, yachts etc.)

The Power Relay is also suitable for industrial use (process control, machine-building, engineering) as an electronic coupling relay between PLC and DC 12 V or DC 24 V load

Features

- Integral power electronics provide a wear-resistant switching function, insensitive to shock and vibration.
- Only a fraction of the control power needed by electro-mechanical relays is required for switching loads. This is important for battery buffered load circuits which have to remain controlled even with the generator off line.
- The extremely low induced current consumption of less than 1 mA is absolutely necessary for battery buffered applications.
- The load circuit is disconnected in the event of an overload or short circuit, the trip curve is also suitable for smaller motor loads.
- The load circuit is permanently monitored for wire breakage.
- The device additionally provides the user with a load currentproportional analog voltage from 0 to 5 V to allow further processing of the actual value of the current flow in a power management system. This voltage signal can also be used for building up a control circuit or for disconnecting the unit at a low load current value by means of the external control.
- For switching and monitoring loads of 10 A plus it is possible to connect several units in parallel. Uniform power distribution between units must be ensured by symmetrical design of the supply cables (length and cross section).
- Coloured label, e. g. red $=10 \mathrm{~A}$, see ordering information.

E-1048-8I... INLINE version

Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{U}}=\right.\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$

Power supply LINE +

Type
Voltage ratings U_{N} Operating voltage U_{S} :

DC power supply with small R_{i} battery and generator etc.
DC 12 V/DC 24 V

Load circuit LOAD
Load output
Max. current rating I_{N}
Types of loads

Current rating range I_{N}

Induced current consumption I_{0} of the unit (OFF condition) $<1 \mathrm{~mA}$
Typical voltage drop $U_{O N}$ at rated current $I_{N}\left(\right.$ at $25^{\circ} \mathrm{C}$)

$\mathbf{I}_{\mathbf{N}}$	$\mathbf{U}_{\mathbf{O N}}$	$\mathbf{I}_{\mathbf{N}}$	$\mathbf{U}_{\mathbf{O N}}$
1 A	50 mV	7.5 A	90 mV
2 A	55 mV	10 A	110 mV
3 A	60 mV		
5 A	80 mV		

Switching point

Trip time (standard curve)
Current limitation
Temperature disconnection After trip

Parallel connection of channels

	identical current ratings may be connected in parallel. To ensure equal distribution of current between units, symmetrical design of the supply feed is necessary (length and cross section).
Leakage current in OFF condition	
	version 2: max. $500 \mu \mathrm{~A}$
Free-wheeling diode for connected load	integral
	version 2: max. 100 A

Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{U}}=\right.\right.$ ambient temperature at $\left.\mathrm{U}_{\mathrm{N}}\right)$

Delay time $t_{\text {on }} / t_{\text {off }}$
(resistive load)
Wire breakage monitori
ON and OFF
condition of load
Short circuit, overload
in load circuit

typically 5 ms / typically 1.5 ms
(EMC filter in control input)
wire breakage thresholds:
in OFF-condition (version 1):
$\mathrm{R}_{\text {load }}>$ typically $100 \mathrm{k} \Omega$
in OFF-condition (version 2):
$\mathrm{R}_{\text {load }}>$ typically $10 \mathrm{k} \Omega$
in ON-condition: $I_{\text {load }}<$ typically $0.2 \times \mathrm{I}_{\mathrm{N}}$ indication via group fault signalisation SF (switching output)
Fault indication will not be stored, i.e. after remedy of wire breakage fault indication will disappear possible options:

- wire breakage indication only in ON condition
- wire breakage indication only in OFF condition
- no wire breakage indication)
- disconnection of load, indication via group signal SF
- no automatic re-start
- after remedy of the fault unit has to be reset via control input IN+

Control input IN+

Control voltage IN+
$0 . .5 \mathrm{~V}=$ "OFF", 8.5... $32 \mathrm{~V}=$
"ON"
Control current $\mathrm{I}_{\mathrm{E}} \quad 1 . .10 \mathrm{~mA}(8.5 \ldots \mathrm{DC} 32 \mathrm{~V})$
Reset in the event of a failure - reset via external control signal (low

- high) at control input IN+
- via reset of supply voltage

Switching frequency
at resistive or inductive load max. 100 Hz
Status and diagnostic function

Control signal AS

Group signal SF
transistor output minus switching (LSS), open collector, short circuit and overload proof, max. load: DC $32 \mathrm{~V} / 2 \mathrm{~A}$
0 V-level: when unit is set
(at $\mathrm{IN}+=8.4 \ldots 32 \mathrm{~V}$)

Analogue output U(I)

Trip times definition of t_{90} reached 90% of final value response time of load change on duty: $\mathrm{t}_{90}=$ typically 1 ms

Visual status indication

Control signal AS LED yellow
Group fault signal SF LED red

General data

Reverse polarity protection

Control circuit
Load circuit
Status outputs
yes
no (due to integral free-wheeling diode) interference voltage resistance max. DC 32 V

Technical Data $\left(\mathrm{T}_{\mathrm{U}}=25^{\circ} \mathrm{C}, \mathrm{U}_{\mathrm{S}}=\mathrm{DC} 24 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{U}}=\right.\right.$ ambient temperatureat $\left.\mathrm{U}_{\mathrm{N}}\right)$

Temperature range

ambient temperature

	see ordering key
Tests	
Humid heat	combined test, 9 cycles with functional test test to DIN EN 60068-2-30, Z/AD
Temperature change	min. temperature $-40^{\circ} \mathrm{C}$, max. temperature $+90^{\circ} \mathrm{C}$ test to DIN IEC 60068-2-14, Nb
Vibration (random)	in operation, with temperature change 6 g eff. ($10 \mathrm{~Hz} . . .2,000 \mathrm{~Hz}$) test to DIN EN 60068-2-64
Shock	$25 \mathrm{~g} / 11 \mathrm{~ms}, 10$ shocks test to DIN EN 60068-2-27
Corrosion	test to DIN EN 60068-2-52, severity 3
Protection class	housing IP30 to DIN 40050
EMC requirements	higher protection class upon request
	EMC directive: emitted interference EN 61000-6-3 noise immunity EN 61000-6-2
	Automotive directive: emitted interference, noise immunity:

Terminals of INLINE version
(7 pin, standard)
7 blade terminals $6.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
to DIN 46244-A6.3-0.8
contact material CuZn37F37
copper-plated and tin-plated

- E-T-A socket type 17-P10-Si
- on a pc board with 6.3 mm receptacles

Housing INLINE version

max. dimensions

Materials

Mass

INLINE:

$11.5 \times 50 \times 56 \mathrm{~mm}$ when plugged in $11.5 \times 50 \times 66 \mathrm{~mm}$ including terminals INLINE: PA66
approx. $23 \mathrm{~g} . .33 \mathrm{~g}$, depending on version

Approvals

according to EU, EMC and automotive directives

Ordering Information

Type
E-1048-8I Smart Power Relay DC $12 \mathrm{~V} / 24 \mathrm{~V}-1$ A... 10 A
in INLINE version
Housing / temperature range
3 with housing $/ 70^{\circ} \mathrm{C}$ (without moisture condensation)
4 with housing / $-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
C with control input (+ control 8.5... 32 V)
LEDs
0 without LEDs
3 2 LEDs: AS yellow, SF red
Status output minus-switching
A without
D with AS and SF
Contents of group fault signal SF/ LED indication SF

0	without
1	short circuit / overload
3	short circuit / overload + wire breakage on
4	short circuit / overload + wire breakage

off + wire breakage on
Analogue output
Vo without
V1 $0 . . .5 \mathrm{~V}$
Characteristic curve
4200 ms
(switch-off delay with overload)
Voltage rating U3 DC $12 / 24 \mathrm{~V}$

Current ratings /
colour of label
1 A / black
2 A / grey
A / purple
5 A / light-brown
7.5 A / brown
$10 \mathrm{~A} / \mathrm{red}$
Available configurations:
part number (without options $=$ "BASIC")
E-1048-81 3 - C 0 A 0 V0-4U3- A
part number (various options)
E-1048-81 4 - C 0 A 0 V0-4 U3-... A
E-1048-81 4 - C 3 A 1 V0-4 U3-... A
E-1048-81 4 - C 3 D 1 V0-4 U3-... A
E-1048-81 $4-C \quad 3 \quad D \quad 1 \quad$ V1-4 U3-... A
E-1048-81 4 - C 3 D 3 V0-4 U3-... A
E-1048-8I 4 - C 3 D 4 V0-4 U3-... A
part number (all options = "DELUXE")
E-1048-81 4 - C 3 D 4 V1-4 U3-... A

Preferred types

Preferred types	Standard current ratings (A)					
	1	2	3	5	7.5	10
E-1048-814-C3D1V1-4U3-	x	x	x	x	x	x
$\mathrm{E}-1048-813-\mathrm{C} 3 \mathrm{D} 1 \mathrm{~V} 0-4 \mathrm{U} 3-$	x	x	x	x	x	x
$\mathrm{E}-1048-814-\mathrm{C} 3 A 1$ V0-4U3-	x	x	x	x	x	x

Dimensions INLINE version (all options = "DELUXE")

This is a metric design and millimeter dimensions take precedence ($\frac{\mathrm{mm}}{\mathrm{inch}}$)

Connection diagram INLINE version

 (all options = "DELUXE")

Pin selection INLINE version

$\mathrm{E}-1048-8 \mathrm{l}$.	17-P10-Si		
$\mathrm{LINE}+$	(2)	(2)	$[2(\mathrm{k})]$
GND	(5)	(5)	$[12]$
SF	(7)	(7)	$[24]$
$\mathrm{U}(\mathrm{l})$	(3)	(3)	$[2(\mathrm{i})]$
AS	(6)	(6)	$[23]$
$\mathrm{IN}+$	(4)	(4)	$[11]$
LOAD	(1)	(1)	$[1]$

Typical time/current characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Accessories for E-1048-8I.

Busbar (10-way) (supplied as a complete package)
for type 17 socket
(for max. 100 A continuous load),
more positions available on request
X 21115701 with terminal
X 21115702 without terminal

Insulating sleeving for busbar (10-way)
Y 30382401

Connector bus links -P10
X 210588 01/ $1.5 \mathrm{~mm}^{2}$, (AWG 16), brown (up to 13 A max. load)
X 210588 02/ $2.5 \mathrm{~mm}^{2}$, (AWG 14), black (up to 20 A max. load)
X 210588 03/ $2.5 \mathrm{~mm}^{2}$, (AWG 14), red (up to 20 A max. load)
X 210588 04/ $2.5 \mathrm{~mm}^{2}$, (AWG 14), blue (up to 20 A max. load)

2 mounting clips
Y 30050402
(2 pcs needed per unit)

Installation drawing with mounting clips Y 30050402

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Circuit Breakers category:

Click to view products by ETA manufacturer:

Other Similar products are found below :
0185080.X 0185100.XP $0185150 . X \mathrm{XP} \underline{0700005} \underline{0700007} \underline{0700010} \underline{0700015} \underline{0700020} \underline{0700025} \underline{0700030} \underline{0700040} \underline{0712107} \underline{0712123}$
$\underline{0712152} \underline{0712194} \underline{0712217} \underline{0712233} \underline{0712259} \underline{0712275} \underline{0712291} \underline{0712314} \underline{0900100} \underline{0900113} \underline{0900126} \underline{0900207} \underline{0900210} \underline{0900317}$
$\underline{0900333} \underline{0900414} \underline{0900618} \underline{0900634} \underline{0900812} \underline{0901002} \underline{0902030} \underline{0902056} \underline{0902072} \underline{0902098} \underline{0902108} \underline{0902111} \underline{0902124} \underline{0902137}$
090221809022210902247090226309023280902331090234409024090902412

