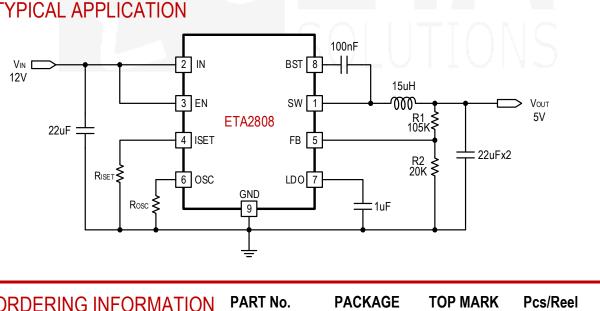


35V/3A Synchronous Step-Down Converter in ESOP8

DESCRIPTION

The ETA2808 is a high-efficiency DC-to-DC step-down switching regulator that is capable of delivering up to 3A of output current. The device operates with wide input voltage range from 4.6V to 35V, making it ideal for high voltage USB charging applications.

The ETA2808 uses a constant current mode architecture. It includes constant current(CC)/ constant voltage(CV) output regulation and output cord compensation. It also includes external programmable switching frequency for EMI optimization and external adjustable CC current limit setting, making it a perfect solution for car charger application.


ETA2808 is available in ESOP8 package.

FEATURES

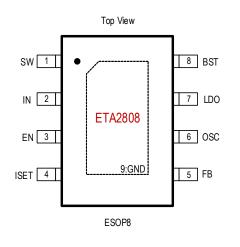
- Wide Input Voltage Range: 4.6V-35V
- 40V Input Standoff Voltage
- High Efficiency PFM Mode at Light Load
- Capable of Delivering 3A Output Current
- 100% Duty Cycle
- Support CC/CV Output
- Cord Compensation Function
- Adjustable Switching Frequency
- Adjustable Output Current Limit
- **Current Mode Control**
- Logic Control Shutdown
- Thermal Shutdown and UVLO
- Available in ESOP8 Package
- **RoHS** Compliant

APPLICATIONS

- Car Chargers
- Industrial Applications
- Automotive Applications

TYPICAL APPLICATION

ORDERING INFORMATION


ETA2808E8A

ESOP-8

ETA2808 4000 YWWXL

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

IN Pin Voltage		0.	3V to 40V
EN Pin Voltage		–0.3V to	VIN+0.3V
SW Pin Voltage–0.3V(-3V for 10 BST Voltage			
FB, LDO, OSC, ISET Pin Voltage		–0).3V to 6V
SW Pin to ground current		Internal	lly limited
Operating Temperature Range		–40°	C to 85°C
Storage Temperature Range		–55°C	to 150°C
Thermal Resistance	θις	θја	
ESOP8	10	50	°C /W
Lead Temperature (Soldering, 10se	ec)		260°C

ELECTRICAL CHARACTERISTICS

(V_{IN} = 12V, unless otherwise specified. Typical values are at TA = 25° C.)

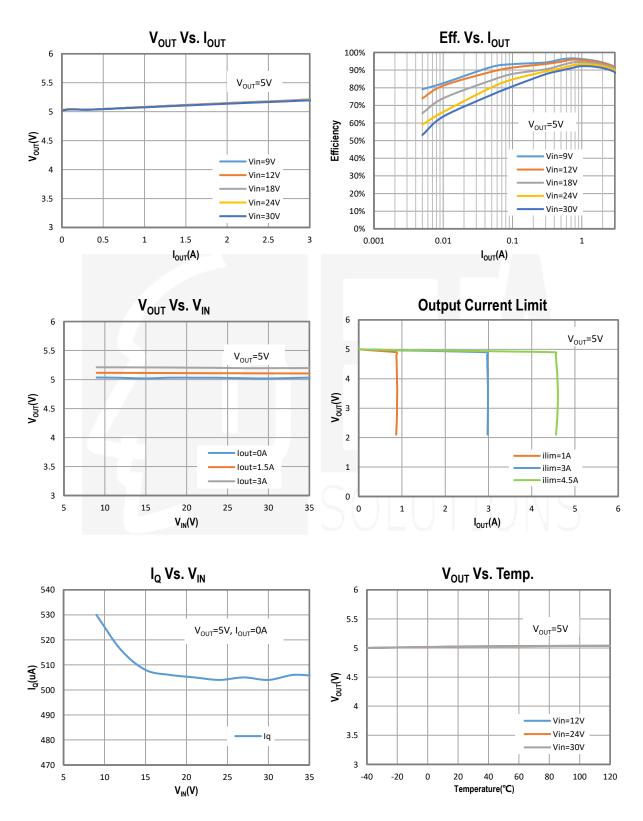
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage Range (1)		4.6		35	V
Input UVLO	Rising, Hysteresis=320mV		4.57		V
Input Supply Current	V _{FB} =0.9V,no switching		500		μA
Input Shutdown Current			8		μA
VLDO Internal Voltage			5.3		V
FB Voltage		0.784	0.8	0.816	V
FB Cord Compensation Current ⁽¹⁾	I _{OUT} =2A, I _{CORD} (A)=I _{OUT} (A)/2000000	ΨL	4	CV	μA
	Rosc open		250		KHz
Switching Frequency	Rosc=68K, Fosc(KHz)=20000/Rosc(KOhm)		300		KHz
	R _{osc} =0		500		KHz
Switching Frequency Range		120		1100	KHz
OSC Voltage			0.6		V
Maximum Duty Cycle	F _{osc} =300KHz			100	%
Soft Start Time			300		μs
	On Time, F _{OSC} =300KHz, V _{FB} =0		6		ms
Short Circuit Hiccup Time ⁽¹⁾	Off Time, Fosc=300KHz, V _{FB} =0		300		ms
FB_Hiccup Falling Threshold			32		$%V_{FB}$
FB_Hiccup Rising Threshold			40		$%V_{FB}$
FB_OVP Falling Threshold			107		$%V_{FB}$
FB_OVP Rising Threshold			109		%Vfb

VOUT=0, Rosc=68K RISET=50K, Icc(A)=160/RISET(KOhm)	75 3.2	KHz
	3.2	٨
I _{CC} (A)=160/R _{ISET} (KOhm)	3.2	
		~
RISET open	3.5	Α
R _{ISET} =0	4.5	Α
R _{ISET} =50K	0.6	V
I _{sw} =500mA	56	mΩ
Isw=500mA	29	mΩ
	6	Α
	120	mA
Rising	1.3	V
Falling	1.1	V
V _{EN} =0	1	μA
	150	°C
	20	°C
	RISET OPEN RISET=0 RISET=50K Isw=500mA Isw=500mA Rising Falling	RISET OPEN 3.5 RISET=0 4.5 RISET=50K 0.6 Isw=500mA 56 Isw=500mA 29 6 120 Rising 1.3 Falling 1.1 V _{EN} =0 1 150 150

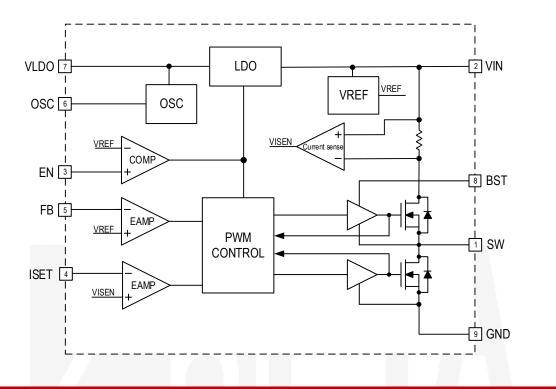
Notes:

1) Guaranteed by Design

2) Guaranteed by Engineering Characterization


PIN DESCRIPTION

PIN #	NAME	DESCRIPTION		
1	SW	Inductor connection. Connect an inductor between SW and the regulator output.		
2	IN	Supply voltage. Bypass with a 22µF ceramic capacitor to GND.		
3	EN	Enable pin for the IC. Drive this pin high to enable the IC, low to disable.		
4	ISET	External current limit setting pin. Connect a resistor at this pin to GND to set the output current limit: $I_{cc} = \frac{160}{R_{ISET}(KOhm)}(A)$		
5	FB	Feedback Input. Connect an external resistor divider from the output to FB and GND to set V _{OUT} .		
6	OSC	External switching frequency setting pin. Connect a resistor at this pin to GND to set the switching frequency: $F_{osc} = \frac{20000}{R_{osc}(KOhm)} (KHz)$		
7	LDO	Power supply pin for internal circuit. Bypass with a 1uF ceramic capacitor to GND.		
8	BST	Bootstrap pin. Connect a 100nF capacitor from this pin to SW.		
Exposed Pad	GND	Ground pin.		


TYPICAL CHARACTERISTICS

(Typical values are at T_A = 25°C unless otherwise specified.)

FUNCTIONAL BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The 2808 is a wide input range, high-efficiency, DC-to-DC step-down switching regulator, capable of delivering up to 3A of output current, integrated with a 56m Ω high side MOSFET. It uses a PWM current-mode control scheme. An error amplifier integrates the error between the FB signal and the internal reference voltage. The output of the integrator is then compared to the sum of a current-sense signal and the slope compensation ramp. This operation generates a PWM signal that modulates the duty cycle of the power MOSFETs to achieve regulation for output voltage.

Light Load Operation

Traditionally, a fixed constant frequency PWM DC-DC regulator always switches even when the output load is small. When energy is shuffling back and forth through the power MOSFET, power is lost due to the finite Rdson of the MOSFET and parasitic capacitances. At light load, this loss is prominent and efficiency is therefore very low. ETA2808 goes into a power save mode during light load, thereby extending the range of high efficiency operation.

Enable

EN is a digital control pin that turns the ETA2808 on and off. Drive EN High to turn on the regulator, drive it Low to turn it off. Connecting the EN pin through a pull up resistor or shorted EN to IN will automatically turn on the chip whenever plug in IN.

CC Current Setting

We can set the CC current for ETA2808 by connecting a resistor from ISET pin to GND, the CC current is determined by the equation below.

$$I_{cc} = \frac{160}{R_{ISET}(KOhm)} (A)$$

If R_{ISET} is bigger than 300K or float the ISET pin, it will work with internal current setting, which is 3.5A. If R_{ISET} is smaller than 30K, the CC current will be 4.5A. If $30K < R_{ISET} < 300K$, the CC current can be set by the equation.

www.etasolution.com ETA2808 Rev 1.2

External Frequency Setting

We can set the switching frequency for ETA2808 by connecting a resistor from OSC pin to GND, the frequency is determined by the equation below.

$$F_{\rm osc} = \frac{20000}{R_{\rm osc}(\rm KOhm)} (\rm KHz)$$

If R_{osc} is bigger than 170K or float the OSC pin, it will work with internal frequency setting, which is 250KHz. If R_{osc} is smaller than 15K, the frequency will be 500KHz. If 15K< R_{osc} <170K, the frequency can be set by the equation.

External Output Voltage Setting

The output voltage of the ETA2808 regulator can be programmed by using an external resistor divider. The output voltage is calculated by the equation below.

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R_1}{R_2}\right)$$

Where: VREF =0.8 typically (the internal reference voltage)

R2 has to be between 10KOhm to 100KOhm and thus R1 is calculated by the following equation.

$$R_1 = \left(\frac{V_{OUT}}{V_{REF}} - 1\right) \times R_2$$

Cord Compensation Function

ETA2808 has a cord compensation feature to compensate the voltage drop due to cord resistance. The sink current at FB pin for cord compensation is I_{CORD} when output current is I_{OUT} .

The output voltage is calculated by the equation below.

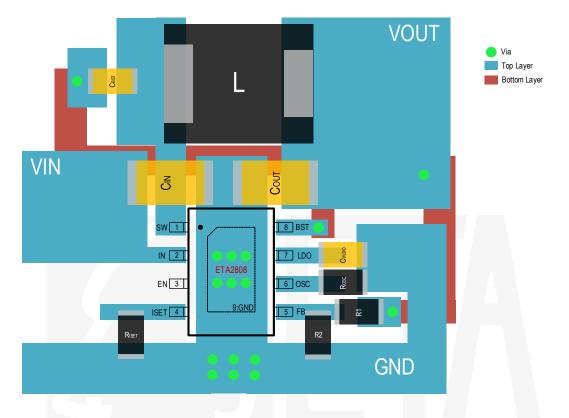
$$V_{OUT} = V_{REF} \times \left(1 + \frac{R_1}{R_2}\right) + V_{CORD_COMP}$$

The $V_{CORD COMP}$ can be calculated by the equation below.

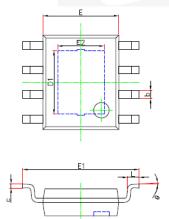
$$I_{\text{CORD}} = \frac{I_{\text{OUT}}(A)}{2000000} (A), \ V_{\text{CORD}_\text{COMP}} = I_{\text{CORD}} \times \ R_1(\text{Ohm})$$

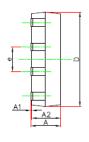
Over Current Protection and Hiccup

ETA2808 has a cycle-by-cycle over current limit for when the inductor current peak value is over the set current limit threshold. When the output voltage drop until FB falls below UV threshold (0.3V), the ETA2808 will enter hiccup mode. It will turn off the chip immediately for 300mS. After that, it will try to re-starts as normal for 6mS. After 6mS, if FB is still below UV threshold, then the chip enters hiccup mode again. If FB is higher than UV threshold, it will enter the normal mode.


Over-Temperature Protection

Thermal protection disables the output when the junction temperature rises to approximately 150°C, allowing the device to cool down. When the junction temperature cools to approximately 130°C, the output circuitry is again enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits regulator dissipation, protecting the device from damage as a result of overheating.


PCB GUIDELINES


Keep the power devices as close to the chip as possible to achieve the smallest power loop area, which leads to the best EMI performance; C_{IN} is always placed nearest to V_{IN} and GND

PACKAGE OUTLINE

Package: ESOP8

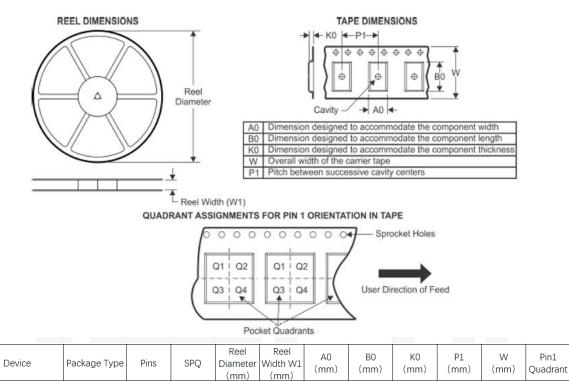
Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
А	1.300	1.700	0.051	0.067	
A1	0.000	0.100	0.000	0.004	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.201	
D1	3.202	3.402	0.126	0.134	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
E2	2.313	2.513	0.091	0.099	
е	1.270(BSC)		0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

ETA2808E8A

ESOP8

4000

330


12.7

6.6

8

TAPE AND REEL INFORMATION

2.05

8

12

Q1

5.4

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Isolated DC/DC Converters category:

Click to view products by etasolution manufacturer:

Other Similar products are found below :

PSL486-7LR Q48T30020-NBB0 JAHW100Y1 SPB05C-12 SQ24S15033-PS0S CE-1003 CE-1004 MAU228 J80-0041NL DFC15U48D15 XGS-1205 06322 SPB05B-15 L-DA20 DCG40-5G XKS-2405 DPA423R vi-m13-cw-03 VI-L53-CV 24IBX15-50-0ZG HZZ01204-G SPU02L-09 SPU02M-09 SPU02N-09 QUINT4-BUFFER/24DC/40 QUINT4-CAP/24DC/5/4KJ 73-551-5039I DFC15U48D15G SEN-6471-1EM AHV2815DF/HBB MI-LC21-IX PAH-48/8.5-D48NB1-C BM3020-7A QRS2050P025K00 CM2320-9EG SKMW15F-05 V300A28H400BF3 TEN 15-1223 TEQ 100-2418WIR TEQ 160-7218WIR R05C05TE05S-R HQA2W085W033V-N07-S AM1SS-2405SJZ AM2DS-1224SJZ AM2DS-2405DJZ AM10SBO-4824SNZ-B AM15E-2405S-NZ AM2DS-1212SJZ AM30SBO-4805SNZ-B LT8301ES5#WTRPBF