

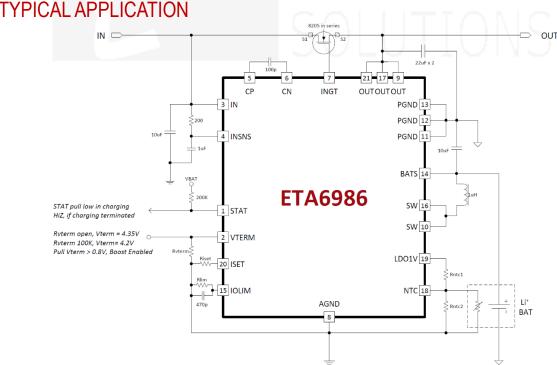
Single Inductor, 5A Battery Charger with 3A USB OTG,

0.1us True OVP

DESCRIPTION

ETA6986 is a switching Li-Ion battery charger capable of delivering up to 5A of charging current to the battery and also capable of delivering up to 3A in boost OTG operation. It employs a charge pump to achieve a very fast input OVP, a For charging, it uses a proprietary control scheme that eliminates the current sense resistor for constant current control, thereby improving efficiency and reducing costs. It can also output a 5V voltage in the reversed direction by boosting from the battery. Therefore, it only needs a single inductor to provide power bi-directionally. ETA6986 is truly an ideal solution controlled by MCU for battery charging and discharge applications, such as power banks, smart phones, and tablets with only one USB port that can be used for both charging battery and USB OTG function.

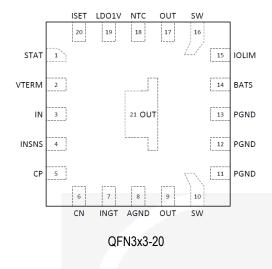
FEATURES


- Bi-Directional Power conversion with Single Inductor
- Input OVP with 0.1us reaction time
- Input standoff voltage up to 20V
- Switching Charger up to 5A
- 5V Synchronous Boost up to 3A
- Up to 95% Efficiency
- NTC thermistor input

APPLICATIONS

- Power Bank
- Smart Phone / Tablet, MID

ORDERING INFORMATION


PART	PACKAGE	TOP MARK	
ETA6986F3W	QFN3x3-20	ETA6986	
		YWW2L	

ETA6986 is in a tiny QFN3x3-20 package.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

OUT Voltage			–0.3V to 6V
IN, INGT Voltage		–	0.3V to 20V
All Other Pin Voltage	Vo	ит -0.3V t	o V _{OUT} +0.3
SW,IN,OUT to ground current	nt	Interr	nally limited
Operating Temperature Rang	je	40°	°C to 85°C
Storage Temperature Range	••••••	–55°	C to 150°C
Thermal Resistance	θ_{JC}	θ_{JA}	
QFN3X3-20	2	30	ºC/W
Lead Temperature (Soldering	, 10ssed	c) (c	260°C
ESD HBM (Human Body Mod	de)		2KV
ESD MM (Machine Mode)			200V

ELECTRICAL CHACRACTERISTICS

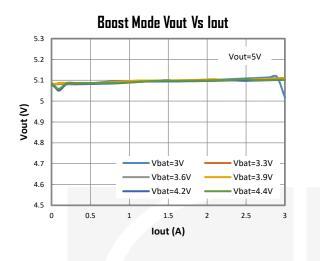
 $(V_{IN} = 5V, unless otherwise specified. Typical values are at TA = 25oC.)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
BUCK MODE					
IN Standoff Voltage				20	V
IN Range		4.5		5.5	V
IN UVLO Voltage	Rising, Hys=500mV		4.5	NC	V
PUMP Hiccup threshold Voltage	Falling.Vin-Vout<300mV Rising,Hys=50mV	.01	300	ND	mV
PUMP Hiccup on time			7		mS
PUMP Hiccup off time			200		mS
PUMP frequence		500			KHZ
PUMP Voltage	Vingt-Vout	3.5			V
INSNS Clamp Voltage		6.4			V
INSNS OVP Voltage	Hys=300mV				V
	Switcher Enable, Switching		5		mA
IN Operating Current as BUCK	Switcher Enable, No Switching	500		μA	
BATTERY CHARGER					
Pottony (N/ Voltage	R _{VTERM} =50K, I _{BAT} =0mA, default	4.16	4.2	4.24	V
Battery CV Voltage	R _{VTERM} =open, I _{BAT} =0mA, default	4.3	4.35	4.4	V
Charger Restart Threshold	From DONE to Fast Charge	-150			mV
Battery Pre-Condition Voltage	V _{BAT} Rising Hys=200mV	3			V

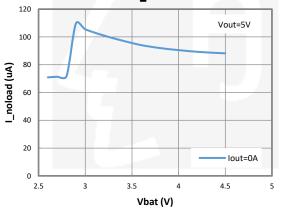
ETA6986

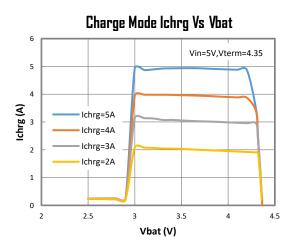
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Pre-Condition Charge Current			200		mA
Fast Charge Current	R _{ISET} =62KΩ		3		Α
Charge Termination Current	Rvichrg=100K,Cvichrg=100pF		200		mA
Charge Termination Blanking time			12		S
BOOST MODE					1
BATT Ok Threshold	Rising, HYS=0.5 V		3.2		V
Output Voltage Range		5.0	5.05	5.1	V
Quiescent Current At BATT	Boost On			100	μA
Shutdown Supply Current At BATT	Idle Mode			30	μA
Switching Frequency	VBATT<4.4V	0.8	1.0	1.2	MHz
lout Current Limit			3.5		Α
Maximum Duty Cycle			90		%
Highside Pmos Rdson	I _{SW} =500mA		45		mΩ
Lowside Nmos Rdson	I _{SW} =500mA		40	Α.	mΩ
Short Circuit Hiccup Current			4		А
	On Time	25			ms
Short Circuit Hiccup Timer	Off Time		750		
ISET,Vhold					
Vhold	Vout start to reduce charging current	4.65			V
ISET Voltage			0.8		V
NTC THERMISTOR MONITOR				NIC	
NTC Threshold, Cold	Charger Suspended		52		%ldo1V
NTC Threshold, Hot	Charger Suspended		13	110	%ldo1V
NTC Threshold Hysteresis			2		%ldo1V
NTC Disable Threshold	Tie NTC to LDO1V				
NTC Input Leakage			0	5	μA
LOGIC INPUT: VTERM for Boost En	nabling				
Logic Input High		1.2			V
Logic Input Low	0		0.4	V	
THERMAL PROTECTION	· ·				•
Charging Thermal Regulation threshold			85		٥C
Thermal Shutdown	Rising, Hys=30ºC		160		٥C
	- ·				

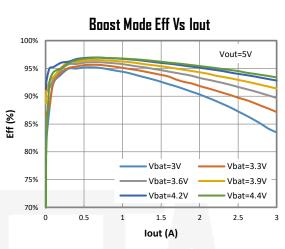
www.etasolution.com

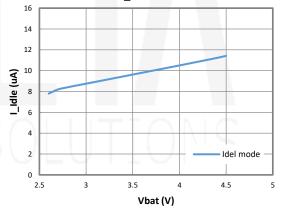

PIN DESCRIPTION

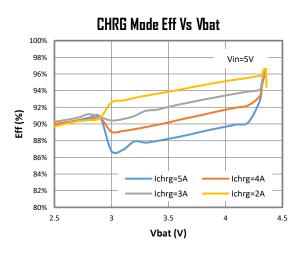
PIN #	NAME	DESCRIPTION	
1	STAT	Charging status pin. Pull low when charge in progress and HiZ when charge finishes.	
2 VTERM VTERM Nulti-functional pin. In charge mode (Vin is available), pulling VTE below 0.2V sets the chip to have charge terminated at 4.2V and le float (VTERM is set 0.3V internally if left float) sets the chip to have terminated at 4.35V. And if Vin is absent, pulling VTERM high will en boost mode that the chip works as step-up converter to make maintaining a 5V voltage.			
3	IN	Input OVP sense pins. Bypass with a 10uF capacitor from this pin to ground.	
4	INSNS	Input sense pin. Internally clamped to 6.4V. Connect a resistor from INSNS to IN, and 1uF cap to Analog ground.	
5	CP	Charging pump Cap's positive terminal	
6	CN	Charging pump Cap's negative terminal	
7	INGT	A gate driver pin to control the external NMOS power path.	
8	AGND	Analog ground pin	
9, 17, 21	OUT	USB 5V output during boost and charging input pin during charging. This is a power pin, bypass with 2x22uF MLCC caps to the pin and PGND as close as possible.	
10, 16	SW	Switching Pin. Connect with an inductor between this pin and BATT.	
11, 12, 13	PGND	Power Ground pin	
14	BATS	Battery Voltage sense pin. Connect to the battery positive terminal with a separate sensing wire to avoid voltage drop to achieve accurate battery CV charging	
15	IOLIM	Output current limit pin. This pin sets the output current limit in Boost mode. Connect a resistor (Rlim) and a cap (470pF) in parallel from this pin to Analog Ground.	
18	NTC	Battery Temperature Monitoring input pin. It sets the valid temperature operating range for both battery charging and discharging.	
19	LDO1V	1V LDO output pin setting up a voltage reference for NTC resistor network. Bypass with a 22pF capacitor to Analog ground.	
20	ISET	Buck Charging current setting pin. Connect a resistor between this pin and analog ground to set the current level.	




TYPICAL CHARACTERISTICS


(Vin=5V, T_A=25°C, unless otherwise specified)





l_ldle Vs Vin

Application Support

Please contact local distributor or ETA solutions for detail engineering support.

PCB Guidelines


Please try to place the Cout, L, and Cbat as suggested by the illustration above. The Cout has to be placed just next to the chip with shortest wire to the OUT and PGND pins. And SW wire goes underneath the chip and connected by a power inductor just next to the Cout. With the Cin placed beside and the shortest SW trace, a very tight and small power loop is achieved, so as to improve EMI characteristics.

www.etasolution.com

Package Outline

Package: QFN3x3-20

BOTTOM	VIEW
--------	------

		SYMBOL	MIN	NOM	MAX	
TOTAL THICKNESS		A	0.5	0.55	0.6	
STAND OFF		A1	0	0.02	0.05	
MOLD THICKNESS		A2		0.4		
L/F THICKNESS		A3	0.152 REF			
LEAD WIDTH		b	0.15	0.2	0.25	
BODY SIZF	×	D	3 BSC			
BODT SIZE	Y	E	3 BSC			
LEAD PITCH		e	0.4 BSC			
	x	D1	0.45	0.55	0.65	
FP SIZF		D2	0.05	0.15	0.25	
EF SIZE	Y	E1	1	1.1	1.2	
		E2	0.4	0.5	0.6	
LEAD LENGTH		L	0.3	0.4	0.5	
		L1	0.63	0.73	0.83	
LEAD TO EXPOSED PAD EDGE		k	0.75 REF			
		k1	0.55 REF			
PACKAGE EDGE TOLERANCE		ممم	0.1			
MOLD FLATNESS		ccc	0.1			
COPLANARITY		eee	0.08			
LEAD OFFSET	bbb	0.1				

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Battery Management category:

Click to view products by etasolution manufacturer:

Other Similar products are found below :

NCP1851BFCCT1G NCP1855FCCT1G FAN54063UCX MP2615GQ-P LC05132C01NMTTTG ISL95522HRZ BD8665GW-E2 ISL9538HRTZ ISL95522AIRZ S-82D1AAE-A8T2U7 S-82D1AAA-A8T2U7 S-8224ABA-I8T1U MP2615CGQ-P ISL6251HRZ ISL6253HRZ ISL6292-2CR3 ISL6292BCRZ-T ISL6299AIRZ ISL9211AIRU58XZ-T ISL9214IRZ ISL9220IRTZ-T FAN54161UCX SY6982CQDC IP6566_AC_30W_ZM WS3221C-6/TR ADBMS1818ASWAZ-RL ADBMS6815WCSWZ ML5245-005AMBZ07CX BQ25672RQMR ADBMS1818ASWZ-R7 KA49503A-BB SC33771CTA1MAE BQ24060DRCR BQ7695202PFBR BQ771809DPJR BQ24179YBGR BQ7693002DBTR BQ25170DSGR TP4586 FM2119L FM1623A DW01 BQ25172DSGR DW01S TP4054 MP2723GQC-0000-Z MP26124GR-Z MP2664GG-0000-Z MP26029GTF-0000-Z MP2695GQ-0000-Z