

DATASHEET

LAMP 209-3SURSYGW/S530-A3/R2

Features

- Two chips are matched for uniform light output, wide viewing angle
- · Long life-solid state reliability
- I.C. compatible/Low power consumption
- Pb free
- · The product itself will remain within RoHS compliant version

Description

- The209-3LED lamp contain two integral chips and is available as both bicolor and bipolar types.
- The Hyper Red and Super Yellow Green light is emitted by diodes of AlGaInP and AlGaInP.
- Type of bipolar lamps are both White Diffused and Color Diffused while the bicolor are White Diffused

Applications

- TV set
- Monitor
- Telephone
- Computer

Device Selection Guide

Chip Materials	Emitted Color	Resin Color	
AlGaInP	Hyper Red	White Diffused	
AlGaInP	Super Yellow Green	White Dinused	

Absolute Maximum Ratings (Ta=25℃)

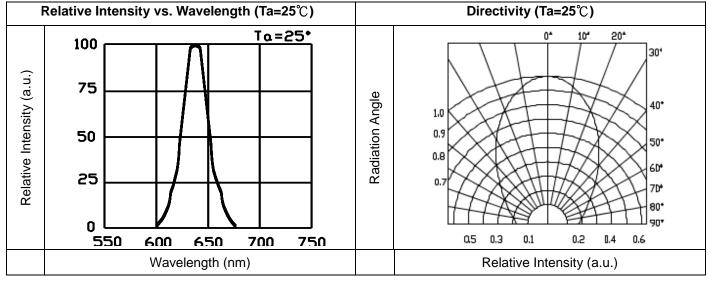
Parameter	Symbol	Rating		Unit
Continuous Forward Current	I _F	SUR/S530 SYG/S530	25 25	mA
Reverse Voltage	V _R	5		V
Power Dissipation	Pd	SUR/S530 SYG/S530	60 60	mW
Operating Temperature	T _{opr}	-40 ~ +85		°C
Storage Temperature	Tstg	-40 ~ +100		°C
Soldering Temperature	T _{sol}	260 °C for 5 sec.		

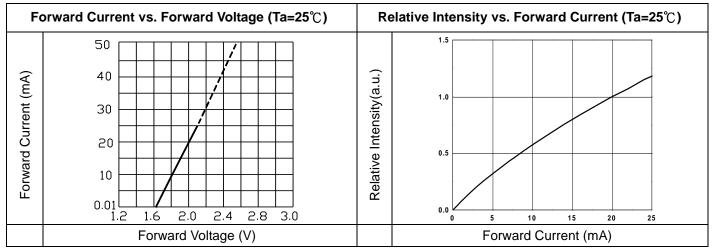
Electro-Optical Characteristics (Ta=25℃)

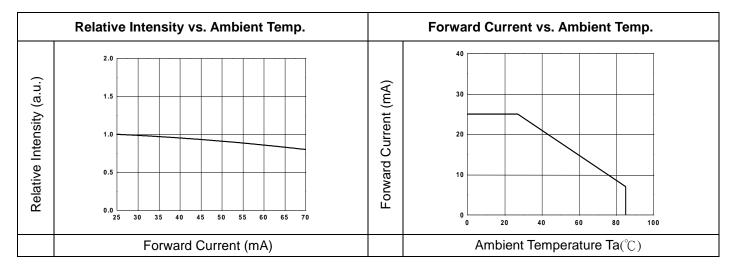
Parameter	S	Symbol	Min.	Тур.	Max.	Unit	Condition
Forward Voltage	V _F	SUR/S530		2.0	2.4	V	I _F =20mA
		SYG/S530		2.0	2.4		
Reverse Current	I _R	SUR/S530			10	μA	V _R =5V
		SYG/S530			10		
Luminous Intensity	Iv	SUR/S530	8	16		mcd	I _F =20mA
		SYG/S530	4	8			
Viewing Angle	201/2	SUR/S530		80		deg	I _F =20mA
		SYG/S530		80			
Peak Wavelength	λρ	SUR/S530		632		nm	I _F =20mA
		SYG/S530		575			
Dominant Wavelength	λd	SUR/S530		624		nm	I _F =20mA
		SYG/S530		573			
Spectrum Radiation Bandwidth	$\bigtriangleup \lambda$	SUR/S530		20		nm	I _F =20mA
		SYG/S530		20			

Note:

*Measurement Uncertainty of Forward Voltage: ±0.1V

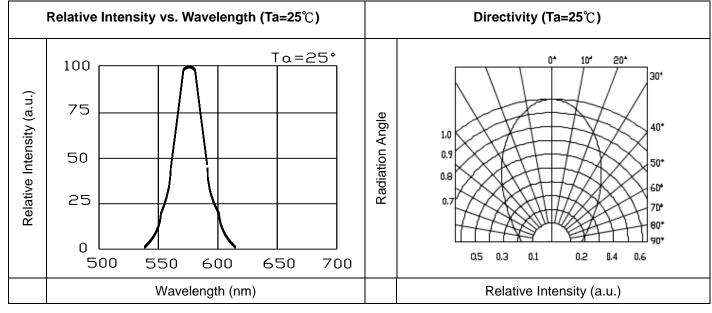

*Measurement Uncertainty of Luminous Intensity: ±10%

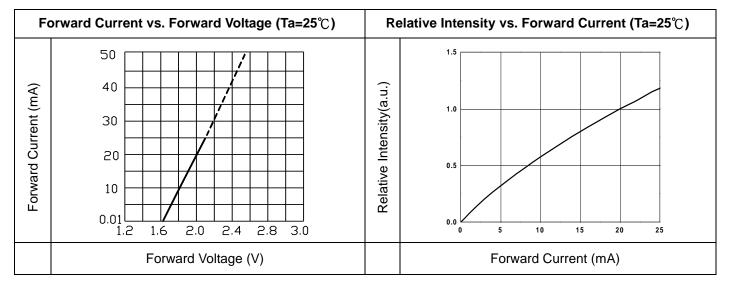

*Measurement Uncertainty of Dominant Wavelength ±1.0nm

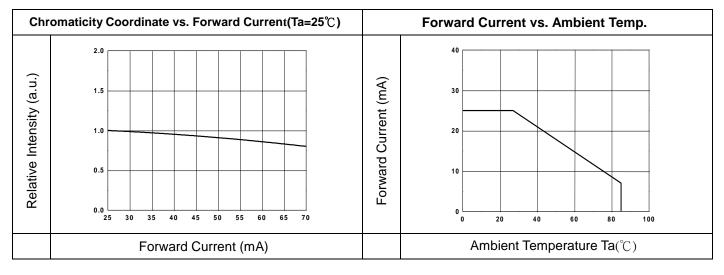


Typical Electro-Optical Characteristics Curves

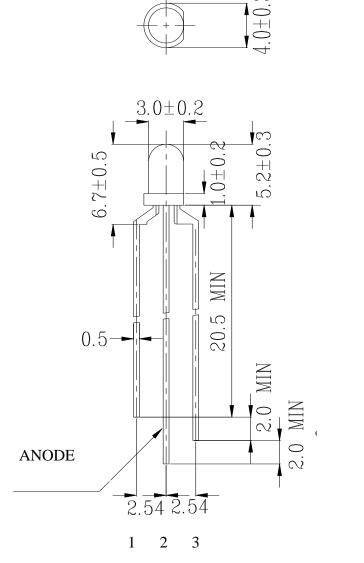
SUR

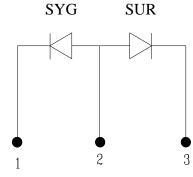




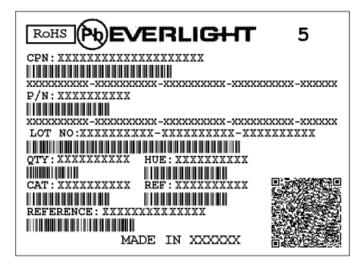


SYG



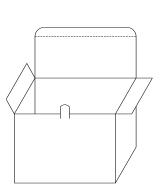


Package Dimension

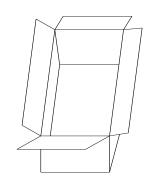

Note: Note:

- 1. All dimensions are in millimeters
- 2. The height of flange must be less than 1.5mm(0.059").
- 3. Without special declared, the tolerance is ± 0.25 mm.

Moisture Resistant Packing Materials


Label Explanation

- CPN: Customer's Production Number
- P/N : Production Number
- QTY: Packing Quantity
- CAT: Ranks of Luminous Intensity and Forward Voltage
- HUE: Color Rank
- REF: Reference
- · LOT No: Lot Number


Packing Specification

Anti-electrostatic bag

Inner Carton

Outside Carton

Packing Quantity

 \odot

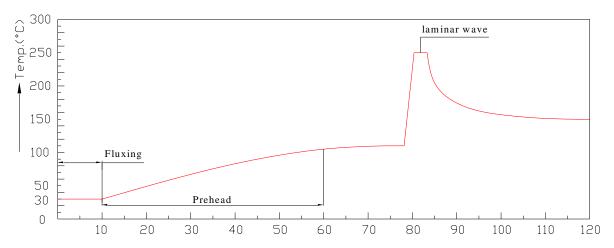
 \odot

- 1. MIN 200 To500 PCS/1 Bag,5 Bags/1 Inner Carton
- 2. 10 Inner Cartons/1 Outside Carton

EVERLIGHT

Notes

- 1. Lead Forming
 - During lead formation, the leads should be bent at a point at least 3mm from the base of the epoxy bulb.
 - Lead forming should be done before soldering.
 - Avoid stressing the LED package during leads forming. The stress to the base may damage the LED's characteristics or it may break the LEDs.
 - Cut the LED leadframes at room temperature. Cutting the leadframes at high temperatures may cause failure of the LEDs.
 - When mounting the LEDs onto a PCB, the PCB holes must be aligned exactly with the lead position of the LED. If the LEDs are mounted with stress at the leads, it causes deterioration of the epoxy resin and this will degrade the LEDs.
- 2. Storage
 - The LEDs should be stored at 30°C or less and 70%RH or less after being shipped from Everlight and the storage life limits are 3 months. If the LEDs are stored for 3 months or more, they can be stored for a year in a sealed container with a nitrogen atmosphere and moisture absorbent material.
 - Please avoid rapid transitions in ambient temperature, especially, in high humidity environments where condensation can occur.


3. Soldering

Careful attention should be paid during soldering. When soldering, leave more then 3mm from solder joint to epoxy bulb, and soldering beyond the base of the tie bar is recommended.

Recommended soldering conditions:

Hand Soldering		DIP Soldering		
Temp. at tip of iron	300°C Max. (30W Max.)	Preheat temp.	100°C Max. (60 sec Max.)	
Soldering time	3 sec Max.	Bath temp. & time	260 Max., 5 sec Max	
Distance	3mm Min.(From solder joint to epoxy bulb)	Distance	3mm Min. (From solder joint to epoxy bulb)	

Recommended soldering profile

- Avoiding applying any stress to the lead frame while the LEDs are at Fright temperature particularly when soldering.
- Dip and hand soldering should not be done more than one time
- After soldering the LEDs, the epoxy bulb should be protected from mechanical shock or vibration until the LEDs return to room temperature.
- A rapid-rate process is not recommended for cooling the LEDs down from the peak temperature.
- Although the recommended soldering conditions are specified in the above table, dip or hand soldering at the lowest possible temperature is desirable for the LEDs.
- Wave soldering parameter must be set and maintain according to recommended temperature and dwell time in the solder

wave.

- 4. Cleaning
 - When necessary, cleaning should occur only with isopropyl alcohol at room temperature for a duration of no more than one minute. Dry at room temperature before use.
 - Do not clean the LEDs by the ultrasonic. When it is absolutely necessary, the influence of ultrasonic cleaning on the LEDs depends on factors such as ultrasonic power and the assembled condition. Ultrasonic cleaning shall be pre-qualified to ensure this will not cause damage to the LED

5. Heat Management

- Heat management of LEDs must be taken into consideration during the design stage of LED application. The current should be de-rated appropriately by referring to the de-rating curve found in each product specification.
- The temperature surrounding the LED in the application should be controlled. Please refer to the data sheet de-rating curve.
- 6. ESD (Electrostatic Discharge)
 - The products are sensitive to static electricity or surge voltage. ESD can damage a die and its reliability.
 - When handling the products, the following measures against electrostatic discharge are strongly recommended:
 - Eliminating the charge
 - Grounded wrist strap, ESD footwear, clothes, and floors
 - Grounded workstation equipment and tools
 - ESD table/shelf mat made of conductive materials
 - Proper grounding is required for all devices, equipment, and machinery used in product assembly. Surge protection should be considered when designing of commercial products.
 - If tools or equipment contain insulating materials such as glass or plastic,
 - the following measures against electrostatic discharge are strongly recommended:
 - Dissipating static charge with conductive materials
 - Preventing charge generation with moisture
 - Neutralizing the charge with ionizers

DISCLAIMER

- 1. EVERLIGHT reserves the right(s) on the adjustment of product material mix for the specification.
- 2. The product meets EVERLIGHT published specification for a period of twelve (12) months from date of shipment.
- 3. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.
- 4. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from the use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 5. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without obtaining EVERLIGHT's prior consent.
- 6. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Standard LEDs - SMD category:

Click to view products by Everlight manufacturer:

Other Similar products are found below :

LTST-C19GD2WT LTST-N683GBEW 597-3006-607F 597-3403-607F LTW-K140SZR40 LTW-M140ZVS 598-8110-100F 598-8170-100F 598-8610-202F 7012X7 AAAF5060QBFSEEZGS 12-22SURSYGC/S530-A3/E2/TR8 1383SURT/S530-A3/TR1(R) APT1608QGW EASV1803BA0 SML310BATT86 SML-512VWT86A SML-LX0606SISUGC/A SML-LXL1307SRC-TR SML-LXR851SIUPGUBC LT1ED53A 17-21/G6C-FM1N2B/3T FAT801-S SSL-LXA227IC-TR31A AM27ZGC03 APB3025SGNC APHK1608VGCA APT2012QGW CLMVC-FKA-CA1E1L81BB7C3C3 CLYBA-FKA-CFHHKL9BBB7A363 CMD11504UR LTW-020ZDCG LTW-21TS5 LTW-K140SZR30 HSMY-C177 HT-121UYG-4739 UYGT801-S KVH1C100MF6R 42-21SYGC/S530-E1/TR8 YGFR411-H 597-2311-402F 597-2712-602F 5973212407NF 597-3302-607F 597-5202-407F 598-8330-117F SAW8WA2A-L35M40-CA SML013WBDW1 SML522BUWT86 SML-LX0402IC-TR