MICRO SWITCH

EJF SERIES

FEATURES

- 1-piece spring mechanism design offering durable acute operation and nice touch feeling
- Heavy/Light operation force specifications
- High flux-tight structure
- High solder reliability
- RoHS Compliant

APPLICATIONS

- Communication equipment
- Security systems
- Office automation appliances
- General industrial machines

SPECIFICATIONS

1. ELECTRICAL

DESCRIPTION		EJF-0.05A	EJF-1A	EJF-3A
Contact Rating:	AC 125V	----	1A	3A
	DC 30V	0.05A	0.5A	2A
Contact Resistance: (Initial)	O.F.1.47N (150gf)	$100 \mathrm{~m} \Omega$ Max.	$100 \mathrm{~m} \Omega$ Max.	100m Ω Max.
	O.F.0.74N (75gf)	$100 \mathrm{~m} \Omega$ Max.	$100 \mathrm{~m} \Omega$ Max.	----
Insulation Resistance		$100 \mathrm{M} \Omega$ Min. at 500 VDC		

NHE K K Hitch

2. CHARACTERISTICS

$\left.\begin{array}{|l|c|c|c|}\hline \text { DESCRIPTION } & \text { TYPE } & \text { EJF-0.05A } & \text { EJF-1A }\end{array}\right]$ EJF-3A

3.CORRECT USE

3-1. Terminal Connections:

Solder Terminals:
3-1-1. When soldering a lead wire to the terminal, first insert the lead wire conductor into the terminal hole and then perform soldering.
Make sure that the capacity of the soldering iron is 30 W maximum and that the temperature of the soldering iron tip is approximately $300^{\circ} \mathrm{C}$. Complete the soldering within 3s.
Using a switch with improper soldering may result in abnormal heating, possibly resulting in burn. Applying a soldering iron for more than 3s or using one that is rated at more than 30W may deteriorate the switch characteristics.
3-1-2. Do not apply the load to terminals at soldering. Because electric and mechanical characteristics may deteriorate due to the load.

Quick-Connect Terminals:
3-1-3. When soldering the lead wire to the PCB terminal, pay careful attention so that the flux and solder liquid level does not exceed the PCB level.
$3-1-4$. Do not apply excessive force horizontally or vertically to the terminals,
otherwise the terminal may be deformed or the housing may be damaged.

3-2. Operating Condition:

3-2-1. Do not leave a switch with the actuator depressed for a long time, otherwise the parts of the switch may soon deteriorate and its operating characteristics may change.
3-2-2. Do not apply oil, grease, or other lubricants to the sliding parts of a switch. The intrusion of oil, grease, or other lubricants into the internal part may cause operating failure or contact failure.

3-3. Operating Stroke Setting:

3-3-1. Take particular care in setting the operating stroke for the pin plunger models. Make sure that the operating stroke is 70% to 100% of the rated OT distance. Do not operate the actuator exceeding the OT distance, otherwise the durability of the Switch may be shortened.

3-4. Using Micro Loads:

3-4-1. Using a model for ordinary loads to open or close the contact of a micro load circuit may result in faulty contact.
3-4-2. Contact faults may occur if a Switch for a general-load is used to switch a micro load circuit. Use switches in the operating range shown in the following diagram. However, even when using micro load models within the operating range shown here, if inrush current occurs when the contact is opened or closed, it may increase contact wear and so decrease durability. Therefore, insert a contact protection circuit where necessary. The minimum applicable load is the N -level reference value. This value indicates the malfunction reference level for the reliability level of $60 \%\left(\lambda_{60}\right)$.
The equation, $\lambda_{60}=0.5 \times 10^{-6} /$ operations indicates that the estimated malfunction rate is less than $1 / 2,000,000$ operations with a reliability level of 60\%.

ErE - J Switch

PART NUMBERING SYSTEM

ELE
 Switch

DIMENSIONS

Terminals

Straight Type

Right Type

Self-Standing Type

Left Type

Solder Type

DIMENSIONS

Actuator

Pin Plunger

	Operating OF type Characteristics	Low-0F	Standard-0F
1.	Operating Force (0F)	$75 \mathrm{gf}(0.74 \mathrm{~N})$ Max.	$150 \mathrm{gf}(1.47 \mathrm{~N})$ Max.
2.	Release Force (RF)	$5 \mathrm{gf}(0.05 \mathrm{~N})$ Min.	20gf (0.20N) Min.
3.	Pretravel (PT)	0.5 mm Max.	
4.	Movement Differential (MD)	0.12 mm Max.	
5.	Operating Position (OP)	$5.5 \pm 0.3 \mathrm{~mm}$	

Straight Lever

	Operating OF type Characteristics	Low-0F	Standard-0F
1.	Operating Force (0F)	$40 \mathrm{gf}(0.39 \mathrm{~N})$ Max.	80gf (0.78N) Max.
2.	Release Force (RF)	$2 \mathrm{gf}(0.02 \mathrm{~N})$ Min.	$5 \mathrm{gf}(0.05 \mathrm{~N})$ Min.
3.	Free Position (FP)	10 mm Max.	
4.	Movement Differential (MD)	0.5 mm Max.	
5.	Operating Position (OP)	$6.8 \pm 1.5 \mathrm{~mm}$	

[^0]
Roller Lever

	Operating OF type Characteristics	Low-0F	Standard-0F
1.	Operating Force (0F)	$40 \mathrm{gf}(0.39 \mathrm{~N})$ Max.	$80 \mathrm{gf}(0.78 \mathrm{~N})$ Max.
2.	Release Force (RF)	$2 \mathrm{gf}(0.02 \mathrm{~N})$ Min.	$5 \mathrm{gf}(0.05 \mathrm{~N})$ Min.
3.	Free Position (FP)	16.5 mm Max.	
4.	Movement Differential (MD)	0.5 mm Max.	
5.	Operating Position (OP)	$13 \pm 2.0 \mathrm{~mm}$	

さHE 并 Switch

DIMENSIONS

Actuator

Simulated Roller Lever

	Operating OF type Characteristics	Low-0F	Standard-0F
1.	Operating Force (0F)	$40 \mathrm{gf}(0.39 \mathrm{~N})$ Max.	80gf (0.78N) Max.
2.	Release Force (RF)	$2 g \mathrm{gf}(0.02 \mathrm{~N})$ Min.	$5 \mathrm{gf}(0.05 \mathrm{~N})$ Min.
3.	Free Position (FP)	13 mm Max.	
4.	Movement Differential (MD)	0.45 mm Max.	
5.	Operating Position (OP)	$8.5 \pm 1.2 \mathrm{~mm}$	

Stainless steel lever $\mathrm{t}=0.3$

Bend Lever

	Operating OF type Characteristics	Low-0F	Standard-0F
1.	Operating Force (0F)	$40 \mathrm{gf}(0.39 \mathrm{~N})$ Max.	$80 \mathrm{gf}(0.78 \mathrm{~N})$ Max.
2.	Release Force (RF)	$2 \mathrm{gf}(0.02 \mathrm{~N})$ Min.	$5 \mathrm{gf}(0.05 \mathrm{~N})$ Min.
3.	Free Position (FP)	14 mm Max.	
4.	Movement Differential (MD)	0.5 mm Max.	
5.	Operating Position (OP)	$9.5 \pm 1.5 \mathrm{~mm}$	

Stainless steel lever $\mathrm{t}=0.3$

Long Straight Lever

	Operating OF type Characteristics	Low-0F	Standard-0F
1.	Operating Force (0F)	15gf (0.39N) Max.	22gf (0.78N) Max.
2.	Release Force (RF)	$2 \mathrm{gf}(0.02 \mathrm{~N})$ Min.	3gf (0.03N) Min.
3.	Free Position (FP)	15.4 mm Max.	
4.	Movement Differential (MD)	3.0 mm Max.	
5.	Operating Position (OP)	$7.4 \pm 2.1 \mathrm{~mm}$	

Stainless steel lever $t=0.3$

DIMENSIONS

Mounting

P. C. B LAYOUT

Mounting Holes

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Basic / Snap Action Switches category:
Click to view products by Excel Cell Electronic(ECE) manufacturer:
Other Similar products are found below :
5SM901-S12 5SM9-S12N195 602EN532 602EN535-RB 602HE5-RB1 604HE223-6B 624HE17-RB 6HM82 6SE1 6SX1-H58 71051 7140293 MBH2731 MIL30126AB6BBMD4A12XAU ML-1155 ML-1376 8AS239 8HM73-3 8SX26-H33 914CE1-6G 11SM1077-H4 11SM1077-H58 11SM1-TN107 11SM405 11SM703-T 11SM8423-H2 11SX37-T 11SX48-H58 11SM2442-T 11SM76-T 11SM77-H58 11SM863-T 11SM866 121EN188-R 1245.0120 125EN56-RB D433V3RD 1267.0101 1267.7101 D4BFC1 12SM4-T2 12SX2-T2 $\underline{1298.0101} \underline{12 S W 3-22}$ DAT533 131EN92-R 131EN93-R AH34329 AH71502619 13MN2

[^0]: Stainless steel lever $\mathrm{t}=0.3$

