Low-Power Hall Switch

General Description

FD2H001B is a low-power integrated Hall switch designed to sense the applied magnetic flux density and give a digital output, which indicates the present condition of the magnitude sensed. One example of the applications is the on/off switch in cellular flip-phones.

The micro power design is especially suitable for battery-operated systems such as cellular phones or laptop computers, in which power consumption is one major concern. The typical power consumption of FD2H001B is below $10 \mu \mathrm{~W}$ at 2.7 V .

The magnetic switching points are precise and insensitive to process and temperature variations.
For FD2H001B, the output will be at the "low" level if the applied magnetic flux density is stronger than the switching threshold.

For detailed magnetic flux direction please refer to the figure. 3

Features

> Micro power consumption
> 2.4 V to 5.5 V battery operation
> Chopper Amplifier based design:
Insensitive to noise and offset caused by process variations, operating temperatures and mechanical stress
> Digital output
> Programmable output direction
> CMOS process
> Available in SOT-23L/ TSOT-23L/SIP-3L package

Pin Descriptions

SOT-23L/ TSOT-23L

Top View

Name	No.	I/O	Description
VDD	1	P	Positive supply
Q	2	O	Open Drain output
VSS	3	G	Ground

Legend: I=input, O=output, I/O=input/output, P=power supply, G=ground

SIP-3L

Top View

Name	No.	I/O	Description
VDD	1	P	Positive supply
VSS	2	G	Ground
Q	3	O	Open Drain output

Legend: I=input, O=output, I/O=input/output, $\mathrm{P}=$ power supply, $\mathrm{G}=$ ground

[^0]
Marking Information

SOT-23L/ TSOT-23L

Lot Number: Wafer lot number's last two digits
For Example: XX686 $\rightarrow 86$
Year: Production year's last digit
Part Number Code: Part number identification code for this product.

SIP-3L

Internal ID: Internal Identification Code
Per-Half Month: Production period indicator in half month time unit
For Example : A \rightarrow First Half Month of January
B \rightarrow Second Half Month of January
C \rightarrow First Half Month of February
D \rightarrow Second Half Month of February
Year: Production year's last digit

This datasheet contains new product information. Advanced Analog Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product

Block Diagram

Figure. 1

Functional Descriptions

Refer to the block diagram (Figure.1), FD2H001B is composed of the following building blocks:

- Bias generator

The bias generator provides precise, temperature and process insensitive current sources for both the Hall plate and the chopper amplifier. These current sources in turn guarantee proper operation of the chip and precise switching thresholds under all kinds of environments specified in the specification.

- Oscillator + Sequencer

The built-in oscillator provides the clock signal, which is taken by the sequencer to determine the periods of the operating phase and the stand-by phase. Typically the operating time is about 60us and the stand-by time is 150 ms . Using such a clocking scheme, the average power consumption is almost equal to that in the stand-by phase, which is under $10 \mu \mathrm{~W}$ at 2.7 V .

- Power on Reset

Used to detect the power-up ramp and reset the digital circuits to attain correct operation as soon as the power is ready.

- Chopper Amplifier

To achieve a higher resolution the chopper amplifier structure is adopted in this design. Use of this structure dynamically removes both the offset and flicker noise at the same time.

- Hysteresis Control

This block determines the switching threshold of the Hall switch in different situations.

Ordering information

Part Number	Operating Temperature	Package	Description	MOQ
FD2H001BaR-G1	$-20{ }^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	TSOT23	$\pm 50 \mathrm{G}(\mathrm{B})$	$3,000 \mathrm{ea} / \mathrm{Reel}$
FD2H001BYR-G1	$-20{ }^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	SOT23	$\pm 50 \mathrm{G}(\mathrm{B})$	$3,000 \mathrm{ea} / \mathrm{Reel}$
FD2H001BH-LF	$-20{ }^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	SIP-3L	$\pm 50 \mathrm{G}(\mathrm{B})$	$1,000 \mathrm{ea} / \mathrm{Bag}$

Absolute Maximum Ratings

Parameter		Conditions	Values	
Ambient Operating Temperature	-	-40	85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-	-40	150	${ }^{\circ} \mathrm{C}$
DC Supply Voltage	-	2.4	5.5	V
Supply Current	-	-	2.5	mA
Magnetic Flux Density	-		unlimited	Gauss
Lead Temperature	10 sec	-	260	${ }^{\circ} \mathrm{C}$

IR Re-flow Soldering Curve

Figure. 2

Operating Conditions

Parameter	Conditions	Min.	Typ.	Max.	Unit
Supply Voltage	-	2.4	2.7	5.5	V
Output Voltage	-	-0.3	2.7	5.5	V
Ambient Temperature	-	-40	25	85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Parameter	Conditions	Min.	Typ.	Max.	Unit
Average Supply Current	-	-	3^{1}	20	$\mu \mathrm{~A}$
Average Supply Current (operating phase)	-	-	1.1^{1}	-	mA
Average Supply Current (stand-by phase)	-	-	2.5^{1}	-	$\mu \mathrm{A}$
Output Saturation Voltage	-	-	0.1	-	V
Output Leakage Current	-	-	0.01	-	$\mu \mathrm{A}$
Operating time	-	-	60	-	$\mu \mathrm{s}$
Standby time	-	-	150	-	ms
Duty cycle	-	-	0.04	-	$\%$

Note1. operating voltage 2.7V

Magnetic Characteristics

Parameter	Conditions	Min.	Typ.	Max.	Unit
Operate Points (\|Bop \mid)	-	40	50	60	G
Hysteresis	-	5	10	15	G

Magnetic Flux Direction

Figure. 3

Typical Characteristics

Figure. 4 Magnetic Switch Points Versus Ambient Temperature (VDD=2.7V)

Figure. 5 Magnetic Switch Points Versus Supply Voltage (Ta=25C degree)

Figure. 6 Average Current Versus Supply Voltage (Ta=25C degree)

Figure. 7 Average Current Versus Ambient Temperature (VDD=2.7V)

Application Circuit Reference

Figure. 8

NOTE:

1. R1 is for power supply filtering function, and must be placed as close to IC1 as possible.

Package Outline

TSOT-23L

Unit: mm

Symbols	Dimension In Millimeters			
	Min	Nom	Max	
A	0.750	-	0.800	
A1	0.025	-	0.050	
A2	0.700	0.750	0.775	
b	0.350	-	0.500	
c	0.100	-	0.200	
D	2.800	2.900	3.000	
E	2.600	2.800	3.000	
E1	1.500	1.600	1.700	
e	0.950 BSC			
e1	1.900 BSC			
L	0.370	0.450	0.600 REF	
L1	0.250 BSC			
L2	0.100	-	-	
R	0.100	-	0.250	
R1	0°	4°	8°	
Θ	4°	10°	12°	
O1				

This datasheet contains new product information. Advanced Analog Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

SOT23

Unit: mm

Symbols	Dimension In Millimeters		
	Min. (mm)	Nom. (mm)	Max. (mm)
A	-	-	1.45
A1	-	-	0.15
A2	0.90	1.15	1.30
b	0.30	-	0.50
c	0.08	-	0.22
D		2.90 BSC.	
E		2.80 BSC	
E1		1.60 BSC	
e		0.95 BSC	
e1		1.90 BSC	
L	0.30	0.45	0.60
L1		0.60 REF.	
L2		0.25 BSC	
R	0.10	-	-
R1	0.10	-	0.25
θ°	0°	4°	8°
$\theta 1^{\circ}$	5°	10°	15°

This datasheet contains new product information. Advanced Analog Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

SIP-3L

Unit: mm

Symbols	Min. (mm)	Nom. (mm)	Max. (mm)	
A	1.245	-	1.753	
A1	$0.75 R E F$			
b	0.33	-	0.56	
b1		0.54 REF		
D	3.85	-	4.2	
E	2.87	-	3.124	
L	13.5	-	15.6	
e				
1.27 REF				

Note:

1. Dimension " D " does not include molding flash, protrusions or gate burrs.
2. Dimension "E" does not include interlead flash, protrusions.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Industrial Hall Effect/Magnetic Sensors category:
Click to view products by Feeling manufacturer:

Other Similar products are found below :
GT-14114 GT-14123 GTN2C15C GT-12076 GT-14049 GT-14067 GT-14132 GT-18030 MZ07A108 PST360G2-1S-C0000-ERA360-05K MZC1-2V2PS-KP0 PSC360G2-F1P-C0000-ERA360-05K-200 115L 9E 502 W06017 115L 5,2E 502 W06017 115L 14E 502 W06017 103SR14A-1 55100-3H-04-A MZT7-03VPS-KR0 MZT7-03VPS-KW0 MZT8-03VPS-KW0 MZT8-28VPS-KP0 A1326LLHLT-T 55505-00-02-B 55100-3M-03-A GN 55.2-ND-15-3 GN 55.2-ND-18-3 GN 55.2-ND-4-3 GN 55.2-ND-8-3 GN 55.2-SC-10-3 GN 55.4-ND-12-9,5-2,5 GN 55.4-ND-26-20,3-5 GN 55.4-ND-7,5-4-1,5 101MG7-BP 103SR18-1 A1324LUA-T MXM1120KIT MXM1120SOKIT A3212EUA-T AA006-02E 55140-3H-03-A 55100-2M-02-A MM12-60APS-ZUK ACX04-F99-I-V15 GN 55.1-SC-24-11.5-4 MZA70155 MZR40158 55100-2M-01-D PW520000 ADH025-00E MZT7-03VPS-KP0

[^0]: This datasheet contains new product information. Advanced Analog Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product

