

2 Phase High Voltage DC Motor Driver IC

General Description

The FS220, a 1-chip composed of hall sensor and output coil drivers, applied to a 2-phase DC motor. The high sensitivity of Hall effect sensor is suitable for motors from mini-type CPU coolers to blowers and DC fans. Typical operation current is 0.45A and operating voltage range is from $2.8V \sim 28V$.

Using few external components, FS220, a high performance integrated IC, is designed for a single-phase DC motor circuit. The circuit diagram of the typical application example is as below.

Features

- ¹ 1 chip hall sensor/drivers
- ' Wide operating voltage range: 2.8V~28V
- [·] Output sink current up to 0.45A
- [·] Package : TO-92SP-4

TO-92SP-4

Typical Application Circuit

Functional Block Diagram

MARK VIEW

PIN DESCRIPTION

NAME	NO.	STATUS	DESCRIPTION
VCC	1	Р	IC Power Supply
NO	2	0	Coil driver output It is low state during the N magnetic field.
SO	3	0	Coil driver output It is low state during the S magnetic field.
GND	4	Р	IC Ground

Absolute Maximun Ratings (at Ta = $25 \,^{\circ}C$)

Zener Breakdown Voltage (Vz)	up 60V
NO/SO Pin Voltage(off)	28V
VCC Pin Voltage	28V
Peak Sink Current (Io)	
Peak Current	1A≦ 100us
Hold Current	800mA
Continuous Current	450mA
Power Dissipation	
Ta=25 °C	700mW
Ta=95 °C	350mW
Thermal Resistance	
Θ _{ja} =	0.195 °C/mW
Operating Temperature Range	-20 °C to +85 °C
Storage Temperature Range	-65 °C to +150 °C
Junction Temperature	+160 °C
Lead Temperature (Soldering, 10 sec)	+260 °C

DC Electrical Characteristics (at Ta = 25 °C)

PARAMETER	SYMBOL	OL TEST CONDITIONS		TYP	MAX	UNIT
Operating Voltage	V _{cc}	No use pin is open (Fig1)	2.8	-	28	V
Quiescent Supply current	I _{CC}	No use pin is open V _{cc} : 2.8V to 28V (Fig1)	-	3.6	5	mA
Output Leakage current	I _{OFF}	Vcc=24V, Vce=24V	-	<0.1	10	uA
NO/SO Saturation Voltage	V _{SAT}	lo = 450mA	-	-	1.2	V

AC Eletrical Characteristics

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Rise time	(t _r)	RL=100ohm(5w) CL=20pF (Fig1)	0.1		0.3	uS
Fall time	(t,)	RL=100ohm(5w) CL=20pF (Fig1)	100		180	nS

FS220LF-A	$Ta = -20^{\circ}C \text{ to } +85^{\circ}C$					
Parameter	Symbal	Min.	Тур	Max.	Unit	
Operate Point	Вор	+5		+65	Gauss	
Release Point	Brp	-65		-5	Gauss	
Hysteresis	Bhys		60		Gauss	
FS220LF-B	Ta = -20°C to +85°C					
Parameter	Symbal	Min.	Тур	Max.	Unit	
Operate Point	Вор			+95	Gauss	
Release Point	Brp	-95			Gauss	
Hysteresis	Bhys		60		Gauss	
FS220LF-C	$Ta = -20^{\circ}C \text{ to } +85^{\circ}C$					
Parameter	Symbal	Min.	Тур	Max.	Unit	
Operate Point	Вор			+120	Gauss	
Release Point	Brp	-120			Gauss	
Hysteresis	Bhys		60		Gauss	

Magnetic Characteristics (1mT = 10Gauss)

FS220 Magnetic Hysteresis Characteristics

Test Circuits:

Typical Characteristics

Function Descriptions HALL SENSOR LOCATION

The Fig 2 is the hall sensor location, where marks the IC number. The best sensitivity, which can be intensified as much as possible, depends on the vertical distance and position between magnetic pole and the hall sensor (Fig 3). For the single-phase motor, this design is very important.

		UNIT
Х	1.75	mm
Y	1.35	mm

Fig 2 FS220 Hall Sensor Location

Darlington-Pair Transistor Output

The figure 4 is the circuit diagram of Darlington-pair transistor. Under the heavy current loading, the power loss of the high saturation voltage can be calculated into the following formula:

 $Pc=(V_{BEQ1}+V_{CE(SAT)Q2})*I_{o}$

According to the IC package and the curve of the power loss, the Pc should be applied to and within the safety value.

60V is the voltage of Zener breakdown diode. However, if the voltage, excluding that of the power supply, is more than 60V under the long-time operation, the diode will be destroyed.

Fig.4 Darlington-pair Transistor Circuits

APPLICATION NOTE

The Example of Typical Application Circuit

Fig 5 is the example of typical application circuit. The red, yellow, and black wires are the input points of the motor system: red, the input of power supply; yellow, the output of FG; black, the ground signal. R_C is an external pull-up resistance for the use of measuring FG signal. In view of the design, the value of R_C could be decided by the transistor saturation voltage (V_{ON}), sink current (I_C), and off-level voltage (V_C).

The formula is:
$$R_{C} = \frac{V_{C} - V_{ON}}{I_{C}}$$

For example:

 $V_{\rm C}$ = +5V for TTL level.

 I_{C} = 10mA at 0.2V saturation voltage

The safety value of R_C = 470

D1 is the reverse protection diode. As if the red and black wires reversely connect with the power source, the current will flow through the ground via IC and coils L1 and L2 to power supply. Under such kind of circumstances, the IC and coils are easy to be burned out. Therefore, D1, the reverse protection diode, is necessary for the design. However, D1 will also cause an extra voltage drop on the supply voltage.

C1 is a capacitor to reduce the ripple noise caused during the transient of the output stages. The volume of the ripple noise depends on the coil impedance and characteristics.

Fig 5 Application Circuit

PACKING SPECIFICATIONS BAG & BOX DIMENSION

CARTON

PACKING QUANTITY SPECIFICATIONS

1000 EA/1 BAG 25 BAGS/1 INSIDE BOX 4 INSIDE BOXES/1 CARTON

LABEL SPECIFICATION

BAG LEBAL, INSIDE BOX & CARTON LABEL

ORDER INFORMATION

Part Number	Operating Temperature	Package	Description
FS220LF-A	-20°C to 85 °C	TO-92SP-4	±65G (B)
FS220LF-B	-20°C to 85 °C	TO-92SP-4	±95G (B)
FS220LF-C	-20°C to 85 °C	TO-92SP-4	±120G (B)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Motor/Motion/Ignition Controllers & Drivers category:

Click to view products by Feeling manufacturer:

Other Similar products are found below :

LV8774Q-AH MC33931EKR2 FSB50250UTD FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 NTE7043 LA6565VR-TLM-E LB11650-E LB1837M-TLM-E LB1845DAZ-XE LC898300XA-MH SS30-TE-L-E AMIS30621AUA LV8281VR-TLM-H BA5839FP-E2 IRAM236-1067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW54-14-4 TB6552FNG,C,8,EL STK984-091A-E LB11651-E IRSM515-025DA4 LV8127T-TLM-H MC33812EKR2 IKCM10H60GA LA6588MC-AH MC33PT2000AF TDA21801 LB11851FA-BH LA6586FA-BH