DMM-5T-3

Multifunctional 3-phase multimeter
with Modbus RTU communication,
4-quadrant electricity measurement

User manual
v. 1.1 (211011)

Table of contents

Features 2

1. Connection scheme 3
2. Selection and installation of a current transformer 4
3. Warnings 4
4. Device maintenance 4
5. General 4
6. First operation of the device 4
7. Introduction of screen 5
8. Introduction of buttons 6
9. Progress on screen information 7
10. Fast forwarding of screen information 12
11. Menu structure. 13
11.1. Setting the current transformer ratio 14
11.2. Changing voltage transformer ratio 14
11.3. RS-485 Remote communication settings 14
11.4. Deleting energy, demand and event records 14
11.5. Enter password value 15
11.6. Changing the connection type. 15
11.7. Setting the date 15
11.8. Setting the time 15
11.9. Task assignment to relay 1 and relay 2 16
12. Dimensions 16
13. Menu values table 17
14. Technical data 18
Appendix 1 19
Appendix 2 22
```
Features
» Measures up to voltage harmonics 55th (L-N and L-L);
» Measures up to current harmonics 55th;
" Supports 3P4W connections;
" RS-485 Modbus RTU;
» 71.5\times61.5 Custom design glass LCD;
" It shows the powers of each phase and total active (P1, P2, P3, P2);
" It shows the powers of each phase and total reactive (Q1, Q2, Q3, Q\Sigma inductive or capacitive);
" It shows the powers of each phase and total apparent (S1, S2, S3, S\Sigma);
" It shows power factors (PF) and cos\sum values of each phases;
» It shows the minimum, maximum and average values of the phase-to-phase and phase-neutral voltages
(V);
" It shows the values of each phase and total current (I1, I2, I3, I\Sigma);
» It shows total import and export active (\SigmakWh) energy;
" It shows total inductive and capacitive reactive (\SigmakVArh) energy;
" 2 relay outputs (adjustable), 1 digital input;
```

» Event logs（high voltage，low voltage，power interruption，voltage irregularity，high current，current irreg－ ularity，THDV and THDI limits）；
» The date and time can be set；
» Real time clock；
» It shows demands；
You can delete energies，demand，and event logs；
The menu is password protected．

1．Connection scheme

Figure－1：3P4W connection type： 3 phase current and 3 phase voltage and neutral

2. Selection and installation of a current transformer

» Note that the value of current transformer is higher than the maximum current drawn from the system.
" It is advisible that the class of the current transformer (it can be written class, $\mathrm{klas}, \mathrm{cl}, \mathrm{kl}$) is 0.5 .
» To avoid the complexity when connecting the current transformer output terminal use different colour cables or give cable numbers.
» Please spread the cables which are connected to current transformer output terminal from remote high voltage lines.
» Please fix current transformers to bara, cable or rail to avoid rattling.

3. Warnings

" Please use the device properly according to our directions.
» Please protect LCD screen from sun light.
» Please take 5 cm space behind the device after the device installation.
» The meter should be fixed to the board using the included latches.
» Please not use device in the damp board.
» Voltage inputs and power supply of the meter should be protected with $0.5 \div 1$ A slow-blow fuses.
» There should be no electricity in the connection cables when assembling device.
» RS-485 communication and pulse inputs should be connected via shielded and/or twisted pair cables.
These cables should be routed as far as possible from power lines.
» Assembling and electrical connections must be done by technical staff according to instruction manuel.
» The feed cables should be suitable for IEC 60227 or IEC 60245 requirements.

4. Device maintenance

Turn off energy of the device and disconnect from connections. Clean the device body by using slightly moist or dry cloth. Do not use conductor or other chemical as a cleaning agent matter which is harmful to device. Make connections after the cleaning of device and give energy to device and make sure that device works properly.

5. General

Energy analyzer measures load or voltage, current, $\cos \phi$, active power, reactive power , minimum and maximum values of the load and also measures demands. It records the events. This analyzer measures current harmonics and voltage harmonics up to 55 . harmonics.

6. First operation of the device

Please read the warnings before powering the device. Make connections of the device according to the connection scheme. When the device is first powered up figure-4 displayed on the screen. Firstly enter the current transformer ratio from the settings menu and if the voltage transformer medium voltage is being measured), enter the voltage transformer ratios.

Number

(1) Indicates the unit of the value
(2) Indicates which phase the value belongs to

Indicates displayed values: V - voltage, I - current, F - frequency, S - apparent power,
3 P - active power, PF - power factor, THD-I - total current harmonics, THD-V - total voltage harmonics, Q - reactive power.
(4) Indicates battery level of clock time

Description	Symbol	Description		
$\rightarrow+\mathbf{P}$	Specified that the indicated active energies are imported	Specified that the indicated reactive energies are inductive		
$\mathbf{- P}-$	Specified that the indicated active			
energies are exported			\quad	Specified that the indicated reactive
:---				
power are capacitive				

Specified that the indicated reactive
-Q energies are capacitive

Symbol	Description	Symbol	Description
Min	Indicates that the values shown are minimum	Din1	Din1: There is voltage (1)
Max	Indicates that the values shown are maximum	Din1	Din1: There is no voltage (0)
Ave	Indicates that the values shown are average	Out1	Out1: Relay 1 is pulled (short circuit)
Dmd	Indicates that the values shown are demand	Out1	Out1: Relay 1 is released (open circuit)
Dip	Indicates that the values shown are below 10\%	Out2	Out2: Relay 2 is pulled (short circuit)
SWl	Indicates that the values shown are over 10\%	Out2	Out2: Relay 2 is released (open circuit)
Cut	Indicates that the values shown are below 40\%	Σ_{P}	Total active energy
Lmt	Indicates that the values shown are over 80% in current and over 20% in harmonics	\sum_{+Q}^{Σ}	Total inductive reactive energy
		\sum_{-Q}	Total capacitive reactive energy

8. Introduction of buttons

Works only in the setting mode (SET). After pressing the button, the edited parameter is abandoned and the device returns to the higher setting level or exits the setting mode.

Works only in the setting mode (SET). Pressing the button moves to the edition of the selected parameter or confirms the value of the edited parameter.

In the setting mode (SET), pressing the button changes the value of the parameter being DOWN edited. Outside the setting mode, pressing the button changes the measurement parameters indicated on the screen.

In the setting mode (SET), pressing the button switches between the parameters of the RIGHT meter. Outside the setting mode, pressing the button shows detailed information about the displayed measurements (such as minimum, maximum or average value ...).

9. Progress on screen information

No.

Screen
Description

Fig. 4.	2300
	2200
	220.

Indicates phase-neutral voltage.
When you press right button, the Figure- 5 appears on the screen.

Fig. 5.
Indicates minimum (Min) voltage values of phase-neutral voltage. When you press right button, the Figure-6 appears on the screen.

Fig. 6.
2300
230.
2300.

Indicates maximum (Max) voltage values of phase-neutral voltage. When you press right button, the Figure-7 appears on the screen.

Fig. 7.
2200
2200.
2200.

Indicates average(Ave) voltage values of phase-neutral voltage. When you press right button, the Figure- 8 appears on the screen.

Fig. 8.

ટર20

Illustrates the date and time, in which phase-neutral voltage goes under 90\% $(<V \operatorname{tr} \times 230 \times 0.9)$ of the nominal voltage values (lowest). When you press the right button, values belong to L2 and L3 phases appear on the screen respectively. When you press right button, the Figure-9 appears on the screen.

Fig. 9.
Illustrates the date and time, in which phase-neutral voltage goes above 110\% (<Vtr $\times 230 \times 1.1$) of the nominal voltage values (swl). When you press the right button, values belong to L2 and L3 phases appear on the screen respectively. When you press right button, the Figure-10 appears on the screen.

Illustrates the recorded date and time, in which phase-neutral voltage goes
Fig. 10.

1813 - $=$

When you press right button, the Figure-11 appears on the screen.

Shows the phase-phase voltage values.
When you press right button, the Figure-12 appears on the screen.

Shows the minimum (Min) values of the phase-phase voltage.
When you press right button, the Figure-13 appears on the screen.

Shows the maximum (Max) values of the phase-phase voltage.
When you press right button, the Figure-14 appears on the screen.

No. Screen

Screen

3800
Fig. 14.
380.0
3800.

Shows the average (Ave) values of the phase-phase voltage. When you press right button, the Figure-15 appears on the screen.

Fig. 15.

"2.206.20 15

2220

- m

Fig. 16.
$\leadsto \propto$

Fig. 17.
Illustrates the date and time, in which phase-phase voltage goes under 90\% (<Vtr$\times 230 \times 0.9$) of the nominal voltage values (lowest). When you press the right button, values belong to L23 and L31 phases appear on the screen respectively. When you press right button, the Figure-16 appears on the screen.

Illustrates the date and time, in which phase-phase voltage goes above 110% (<Vtr $\times 230 \times 1.1$) of the nominal voltage values (swl). When you press the right button, values belong to L23 and L31 phases appear on the screen respectively. When you press right button, the Figure-17 appears on the screen.

Illustrates the recorded date and time, in which phase-phase voltage goes under 40% (as a default) (<Vtr $\times 230 \times 0.4$) of the nominal voltage values (cut), and a blackout occurs. When you press the right button, values belong to L23 and L31 phases appear on the screen respectively.
When you press right button, the Figure-18 appears on the screen.

It shows current values of each phase.

When you press the right key, the Figure-19 comes to the screen.

It shows the minimum (Min) current values of each phase. When you press the right key, the Figure-20 comes to the screen.

It shows the maximum (Max) current values of each phase.

 When you press the right key, the Figure-21 comes to the screen.It shows the average (Ave) current values of each phase. When you press the right key, the Figure-22 comes to the screen.

It shows current demand (Dmd) values for each fuse. When you press the right key, the Figure- 23 comes to the screen.
Fig. 22.
0000.
0000.
0000.
0000.

Fig. 23.
It shows the time and date of demands which belongs to each phase. When you press the right key, values which belongs to the L2 and L3 comes to the screen subsequently.
When you press the right key, the Figure-24 comes to the screen.
It shows the time and date which current limit (>Ctr $\times 0.80$) of each phase is exceeded. When you press the right key, values which belongs to the L2 and L3 comes to the screen subsequently.
When you press the right key, the Figure- 25 comes to the screen.

No.

Screen

VOUO
0000
2000°
Fig. 25.
It shows the active power (P) values for each zone.
When you press the right button, the screen will show Figure-26.

0000
0.000
2000.

Fig. 26.
It shows the maximum active power (P) values for each zone.
When you press the right key, the Figure- 27 comes to the screen.

Fig. 27.
0.000
0000.
10000°

It shows average(Ave) active power (P) value of each phase.
When you press the right key, the Figure- 28 comes to the screen.

It shows the active power (P) demand (Dmd) values for each zone. When you press the right key, the Figure- 29 comes to the screen.

Fig. 29.

22.06 .2016

22:20
= $=$ "
0.000

0000
10000^{2}
Fig. 30.

0000
0000
8000
Fig. 31.

0000
0000

It shows the reactive power value (Q) which belongs to each phase. When the right button is pressed, the Figure- 31 comes to the screen.

It shows the maximum reactive power value (Max) which belongs to each phase. When the right button is pressed, the Figure- 32 comes to the screen.

It shows average (Ave) reactive power (Q) which belongs to each phase. When the right button is pressed, the Figure- 33 comes to the screen.

It shows the demand (Dmd) of reactive power (Q) which belongs to each phase. When the right button is pressed, the Figure- 34 comes to the screen.

It shows the dates and time values of the reactive power(Q)'s demand. When the right botton is pressed values of L2 and L3 phases comes to the screen subsequently. When the right button is pressed, the Figure- 35 comes to the screen.

Fig. 35.
It shows apparent power (S) which belongs to each phase. When the right button is pressed, the Figure- 36 comes to the screen.

No. Screen

Fig. 36.

Fig. 37.

Fig. 38.
0.000. 2000

22.06 .2015

22:20

侃

Fig. 40.
0.000
0.000
0.000

It shows the power factor value (PF) which belong to each phase. When the right button is pressed, the Figure- 41 comes to the screen.

It shows time and dates of each phase when the power factor limit (<0.80) of each phase is lowered (Lmt). When the right button is pressed values of L 2 and L3 phases comes to the screen subsequently. When the right button is pressed, the Figure- 42 comes to the screen.

It shows the frequency value of each phase.
When the right button is pressed, the Figure- 43 comes to the screen.

It shows total harmonic distortion value (THD-V) which belongs to voltage of the phase.
When the right button is pressed, the Figure-44 comes to the screen.

It shows total harmonic distortion value (THD-I) which belongs to current of the phase.
When the right button is pressed, the Figure-45 comes to the screen.

It shows the date and time of each phase exceeding (>\%20) THD-V limit. When you press the right button, the values of the L2 and L3 phases are displayed on the screen respectively.
When the right button is pressed, the Figure- 46 comes to the screen.
It shows the date and time of each phase exceeding (>\%20) THD-I limit. When you press the right button, the values of the L2 and L3 phases are displayed on the screen respectively.
When the right button is pressed, the Figure- 47 comes to the screen.

No. Screen

Description

Voltage harmonics values of up to 55th harmonics are displayed on each screen, with 3 values per screen. . When you press the right button, the values of the L2 and L3 phases are displayed on the screen respectively. When the right button is pressed, the Figure-48 comes to the screen.

Current harmonics values of up to 55th harmonics are displayed on each screen, with 3 values per screen. When you press the right button, the values of the L2 and L3 phases are displayed on the screen respectively.
When the right button is pressed, the Figure-49 comes to the screen.

Fig. 49.
7.0.8.
0.050
B.OM,

It shows the import active, inductive reactive and capacitive reactive energy values which belongs to total of the phase.
When the right button is pressed, the Figure-50 comes to the screen.

Fig. 50.
0.085
7.50, mom $\mathrm{BHO}_{\mathrm{m}}$

It shows the value of import active energy which belongs to each phase. When the right button is pressed, the Figure-51 comes to the screen.

Fig. 51.
0.085^{m}
0.000_{m} $7.80 y_{m}$

Fig. 52.
8085
7.00, man
80.0

It shows the value of inductive reactive energy which belongs to each phase. When the right button is pressed, the Figure-53 comes to the screen.

Fig. 53.

It shows the value of capacitive reactive energy which belongs to each phase. When the right button is pressed, the Figure-54 comes to the screen.

Fig. 54.
Unb. 0.00
OOD
000.

It shows the voltage irregularities of the phases with each other. When the right button is pressed, the Figure-55 comes to the screen.

Fig. 55.
Unb. 7.00
\%.0.

It shows the current irregularities of the phases with each other. When the right button is pressed, the Figure-56 comes to the screen.

22.05.20 16

 14:2ᄅ: 0It shows the date and time.
When the right button is pressed, the Figure-57 comes to the screen.

Fig. 57.
It is used to make settings related to the device.
When you press the right button, the Figure-4 comes to the screen.

10. Fast forwarding of screen information

Fig. 4. Voltage values between phase-neutral
Fig. 11. Phase-to-phase voltage values
Fig. 18. Current values
Fig. 25. Active power (P) values
Fig. 30. Reactive power (Q) values
Fig. 35. Apparent power (S) values
Fig. 40. Power factor (PF) values
11. Menu structure

Fig. 59. Enter the current transformer ratio
Fig. 60. Enter the voltage transformer ratio
Fig. 61. Make communication settings
Fig. 62. Delete energy, demand and event records

Fig. 64. Determine the connection type
Fig. 65. Set the date
Fig. 66. Set the time
Fig. 67. Assign relay 1
Fig. 68. Assign relay 2

11.1. Setting the current transformer ratio

To change the current transformer ratio, press the set button while the Figure- 58 is on the screen. Figure- 69 comes
 to the screen. Press right button to move between digits. Press the down key to change the value of the digit.
You can change the digit value which is the underline. When you press the set button after entering the ratio, the current transformer ratio is recorded and the screen shows figure-59. You can scroll through the parameters in the menu by pressing the right button or you can exit the menu by pressing the Esc key.
Example: 100 / 5A current transformer ratio (multiplier value) is 20. The CTR value needs to be set to 0020 .

11.2. Changing voltage transformer ratio

To change the voltage transformer ratio, press the set button while the Figure-60 is on the screen. Figure-70 comes

Figure-60 to the screen. Press right button to move between digits. Press the down key to change the value of the digit. You can change the digit value which is the underline. When you press the set button after entering the ratio, the voltage transformer ratio is recorded and the screen shows figure-60. You can scroll through the parameters in the menu by pressing the right button or you can exit the menu by pressing the Esc key.
Example: Medium voltage (M.V.) = Enter the ratio of the voltage transformer that converts 34.500 V to 110 V . The ratio (multiplier) is calculated as $34.500 / 110=313.6$ voltage transformer ratio. The VTR value must be set to 313.6.

11.3. RS-485 Remote communication settings

To change the RS-485 remote communication settings, press the set button while figure-61 is on the screen. Figure-71
 comes to the screen. Two parameters can be set here. Baudrate (br - communication speed) and Modbus ID (Id - the number that identifies the device on the RS-485 line). Press the right button to move the point (.) to the parameter you want to set.
Then change the parameter value by pressing the down key. When you press the Set button, the changes that you made are saved and Figure-61 comes to the screen. You can scroll through the parameters in the menu by pressing the right button or you can exit the menu by pressing the Esc key. Modbus ID (MBID) value; when more than one communication devices connect to a modem, serial number or Modbus address must be different. In such cases, enter a different value from other devices.
Baudrate (br): $1200 \div 115200$ bps, Modbus ID (Id): $1 \div 247$, Stop bits: 1, Party: none.

11.4. Deleting energy, demand and event records

To delete the records, press the set key while the screen is shown. Figure-71 comes to the screen. You can delete 3

Figure-62 records here. Energy (En), Demand (dE) and Event logs (LE). Press the right key to move the point (.) to the record which you want to delete. Then press the down key to change the value to "yes". The record value which you do not want to delete must remain in "no".
When you press the Set key, only records with the value "yes" will be deleted and the Figure-62 comes to the screen. You can scroll through the parameters in the menu by pressing the right button or you can exit the menu by pressing the Esc key.

11.5. Enter password value

In order to change password; press set button while Figure-63 is on the screen. The Figure-73 comes to the screen. In order to pass through steps; press the button on the right. In order to change the value of the step press the, "down" button. You can change the step value with underline. If you press the set key after entering the password, the password is saved and the screen comes in Figure-63. Pressing the right key; you can pass through the parameters in the menu or pressing, "Esc" key; you can quit the menu.

11.6. Changing the connection type

In order to change the connection type; press, "Set" key while the Figure-64 is on the screen. Figure-74 comes to the
 screen. It supports 2 types of connection like 3P4L (3 phase current 3 phase voltage neutral) and 3P3L (3 phase current 3 phase voltage without neutral). The link that says "Set" is acceptable. Press the right key to change the connection type. After the connection type is selected, When you press the key, it is saved and the screen comes in Figure-64. Pressing the right key; you can pass through the parameters in the menu or pressing, "Esc" key; you can quit the menu.

11.7. Setting the date

In order to change the date, press the, "Set" key while the Figure-65 is on the screen. The screen comes in Figure-75.
 Underline is on the step which indicate the day. In order to change the day press the, "Down" key. Then if you press the key on the right; underline comes down of the mouth step. Press the, "Down" key in order to change the mouth. Then if you press the key on the right; the underline comes down of the year step. Press the, "Down" key in order to change the year. After the date is updated, when you press the, "Set" key; it is recorded and Figure-65 comes to the screen. Pressing the right key; you can pass through the parameters in the menu or pressing, "Esc" key; you can quit the menu. Date display is organized as day/month/year.

11.8. Setting the time

In order to change the time; press the "Set" key while the Figure-66 is on the screen. The Figure-76 comes to the

menu. Time display is organized as 24 hours. screen; the underline is on the step which shows the clock. Press the "Down" key in order to change the clock. Then if you press the key on the right, the underline comes down the step of second. Press, "down" key to change the second. After the clock, minute and second is updated, it is recorded when you press the, "Set" key and Figure-66 comes to the screen. Pressing the right key; you can pass through the parameters in the menu or pressing, "Esc" key; you can quit the

11．9．Task assignment to relay 1 and relay 2

To assign the task to relay 1，press the set key，when Figure－77 is on the screen．There are 3 settings；these are

Figure－67 Parameter（PAr），Function（Valued）and Value（VAL）．
Press the right key to move the point（．）to the parameter． Press the down key to bring up the desired parameter．Then press the right key to move the point（．）to the function．Press the down key to set the function to low or high set．Press the right key to move the point（．）value．Press the down key to enter the desired value．Then when you press the set key， the task will be assigned to relay 1 and Figure－ 67 comes to screen．You can scroll through the parameters in the menu by pressing the right button or you can exit the menu by pressing the Esc key．

Parameters（PAr）：Voltage（ULn），current（ILn），total current（ILt），total harmonic distortion belong to Voltage（thdV）， total harmonic distortion belong to Current（thdI），power factor（PF），voltage Unbalance（U Un），current Unbalance（I Un），digital input（dIn）and off（OFF）．
Function（Fun）：Functions to be applied for parameters：if greater than value（hl）and smaller than value（LO）．
Value（Val）：The value to be set for the parameters．
Note1：The hysteresis value is fixed at 5% ．
Note2：The task assignment of relay 2 is assigned in the same way as relay 1 ．While in menu for relay 2 assignment， the enterance should be done from the Figure－68．
Note3：To use the digital input parameter， $9 \div 24 \mathrm{~V}$ DC energy should be applied from the enterance of input to the device．In these parameters if the relay is wanted to be pulled HI function；or if it is wanted to be pulled while the energy is not available LO function should be chosen．The change of the voltage at the data input should be minimum at one second $(1 \mathrm{~Hz})$ ．
Example：When the voltage rises above 250 V，switch on relay 1．Parameters（PAr）＝ULn，function（fun）$=\mathbf{h l}$ and value （VAL）$=\mathbf{2 5 0} \mathbf{V}$ should be set．After the relay 1 is set like that；if one of the voltage values rises above 250 V ；relay 1 pulls out（The contact leads become short－circuited）．When the all values od voltage are below 5% of 250 V ；the relay is deactivated（contact leads become open circuit）．

12．Dimensions

13. Menu values table

Parameter number	Parameter	Unit	Factory value	Minimum value	Maximum value
Ctr	Current transformer ratio	-	1	1	5000
Vtr	Voltage transformer ratio	-	1.0	0.1	999.9
br	Baudrate	bps	9600	1200	115200
-	Stop bits	-	1	-	-
-	Data bits	-	8	-	-
-	Parity	-	none	-	-
Id	Modbus ID	-	1	1	247
En	Deleting total energy	-	no	yes	no
dE	Deleting demand values	-	no	yes	no
LO	Deleting event records	-	no	yes	no
PASS	Password	-	0	0	9999
Con Type	Connection type	-	3P4L	3P4L	3 P 4 L
Date set	Date	-	-	2000	2100
Time set	Hour	-	-	-	-
Par	Parameter	-	OFF	OFF, Uln, thdI, PF, U	n, llt, thdU, Un, I Un, dl n
Fun	Function	-	high	high	low
	Uln (voltage)	Volt	vtr×10	vtr×10	vtr×500
	Iln (current)	Amper	$(\operatorname{ctr} \times 10) / 100$	$(\operatorname{ctr} \times 10) / 100$	$(\mathrm{ctr} \times 500) / 100$
	Ilt (total current)	Amper	$(\operatorname{tr} \times 3 \times 10) / 100$	$(\operatorname{trr} \times 3 \times 10) / 100$	$(\mathrm{ctr} \times 3 \times 500) / 100$
UAL	thdU (total voltage har.)	\%	1	1	50
	thdl (total current har.)	\%	1	1	50
	PF (power factor)	\%	0.50	0.50	0.99
	U Un (voltage imbalance)	\%	1	1	50
	I Un (current imbalance)	\%	1	1	50
Dip	Low voltage	\%	$<\operatorname{Vtr} \times 230 \times 0.90 \mathrm{ve}<\operatorname{Vtr} \times 400 \times 0.90$		
Swl	High voltage	\%	$>\operatorname{Vtr} \times 230 \times 1.10 \mathrm{ve}>\operatorname{Vtr} \times 400 \times 1.10$		
Cut	No voltage	\%	$<\operatorname{Vtr} \times 230 \times 0.40 \mathrm{ve}<\operatorname{Vtr} \times 400 \times 0.40$		
Lmt I	Current limit	\%	$>\operatorname{Ctr} \times 0.80$		
Lmt Thd-V	Thd-V limit	\%	>1.20		
Lmt Thd-I	Thd-I limit	\%	>1.20		
Lmt PF	Power factor limit	\%	<0.80		
DI n	Data input frequency	Hz	$>1 \mathrm{~Hz}$		

14. Technical data

Operating voltage	$85 \div 240 \mathrm{~V} \mathrm{AC}$
Operating frequency	$50 / 60 \mathrm{~Hz}$
Operating power	$<10 \mathrm{VA}$
Operating temperature	$-20 \div 55^{\circ} \mathrm{C}$
Input voltage	$5 \div 330 \mathrm{~V} \mathrm{AC}$
Voltage measuring range	$1 \mathrm{~V} \div 600 \mathrm{kV}$
Input current	$1 \mathrm{~mA} \div 5,5 \mathrm{~A}$
Current measuring range	$1 \mathrm{~mA} \div 50.000 \mathrm{~A}$
Voltage, current accuracy	$\pm 0.2 \%$
Active accuracy	$\pm 0.5 \%$
Reactive accuracy	$\pm 1 \%$
Supported connection	3 P 4 W
Current transformer ratio	$1 \div 5000$
Voltage transformer ratio	$1.0 \div 999.9$
Harmonic voltage	$3 \div 55$
Harmonic current	$3 \div 55$
Real time clock	>5 years
Communication	$\mathrm{RS}-485 \mathrm{Modbus} \mathrm{RTU}$
Display	71.5×61.5 mm glass LCD
Contact output	$2 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC} \mathrm{(resistive} \mathrm{load)}$
Digital input	$9 \div 24 \mathrm{~V} \mathrm{DC}$
Weight	$<300 \mathrm{~g}$
Protection class	IP 54 (front panel), IP20 (body)
Panel hole measurements	$91 \div 91$ mm
Connection type	plug -in connection
Cable diameter	$1,5 \mathrm{~mm}{ }^{2}$
Assembly	$o n-$ board

Warranty

F\&F products are covered by a 24-month warranty from the date of purchase.
The warranty is only valid with proof of purchase. Contact your dealer or contact us directly.

CE and MID declaration

F\&F Filipowski sp. j. declares that the device is in conformity with the essential requirements of The Low Voltage Directive (LVD) 2014/35/EU and the Electromagnetic Compatibility (EMC) Directive 2014/30/UE. The MID and CE Declaration of Conformity, along with the references to the standards in relation to which conformity is declared, can be found at www.fif.com.pl on the product page.

Appendix 1
DMM-5T-3: List of registers with measurement results

DMM-5T-3: List of registers with measurement results							
Address (Dec)	Address (Hex)	Parameter	Data type	Read/ Write	Multiplier	Unit	Real value
4000	FAO	Current transformer ratio	Unsigned 16-bit	R	Data	X	1 .. 5000
4001	FA1	Voltage transformer ratio	Unsigned 16-bit	R	Data * 0.1	V	1,0 .. 4000,0
4002	FA2	L1 voltage	Unsigned 16-bit	R	Data * VT * 0.1	V	0,0 .. Vmax
4003	FA3	L2 voltage	Unsigned 16-bit	R	Data * VT * 0.1	V	0,0 .. Vmax
4004	FA4	L3 voltage	Unsigned 16-bit	R	Data * VT * 0.1	V	0,0 .. Vmax
4005	FA5	L12 voltage	Unsigned 16-bit	R	Data * VT * 0.1	V	0,0 .. Vmax
4006	FA6	L23 voltage	Unsigned 16-bit	R	Data * VT * 0.1	V	0,0 .. Vmax
4007	FA7	L31 voltage	Unsigned 16-bit	R	Data * VT * 0.1	V	0,0 .. Vmax
4008	FA8	L1 current	Unsigned 16-bit	R	Data * CT * 0.001	A	0,000 .. Imax
4009	FA9	L2 current	Unsigned 16-bit	R	Data * CT * 0.001	A	0,000 .. Imax
4010	FAA	L3 current	Unsigned 16-bit	R	Data * CT * 0.001	A	0,000 .. Imax
4012	FAC	L1 frequency	Unsigned 16-bit	R	Data * 0.01	Hz	45,00 .. 65,00
4013	FAD	L2 frequency	Unsigned 16-bit	R	Data * 0.01	Hz	45,00 .. 65,00
4014	FAE	L3 frequency	Unsigned 16-bit	R	Data * 0.01	Hz	45,00 .. 65,00
4015	FAF	L1 active power	Unsigned 16-bit	R	Data * CT * VT	W	0 .. Pmax
4016	FBO	L2 active power	Unsigned 16-bit	R	Data * CT * VT	W	0 .. Pmax
4017	FB1	L3 active power	Unsigned 16-bit	R	Data * CT * VT	W	0 .. Pmax
4018	FB2	Total active power	Unsigned 16-bit	R	Data * $\mathrm{CT} * \mathrm{VT}$	W	0 .. Pmax
4019	FB3	L1 reactive power	Unsigned 16-bit	R	Data * $\mathrm{CT} * \mathrm{VT}$	Var	0 .. Qmax
4020	FB4	L2 reactive power	Unsigned 16-bit	R	Data * CT * VT	Var	0 .. Qmax
4021	FB5	L3 reactive power	Unsigned 16-bit	R	Data * CT * VT	Var	0 .. Qmax
4022	FB6	Total reactive power	Unsigned 16-bit	R	Data * CT * VT	Var	0 .. Qmax
4023	FB7	L1 apparent power	Unsigned 16-bit	R	Data * CT * VT	VA	0 .. Smax
4024	FB8	L2 apparent power	Unsigned 16-bit	R	Data * CT * VT	VA	0 .. Smax
4025	FB9	L3 apparent power	Unsigned 16-bit	R	Data * CT * VT	VA	0 .. Smax
4026	FBA	Total apparent power	Unsigned 16-bit	R	Data * CT * VT	VA	0 .. Smax
4027	FBB	L1 $\cos \phi$	Signed 16-bit	R	Data * 0.001	X	-1,000 .. 1,000
4028	FBC	L2 $\cos \phi$	Signed 16-bit	R	Data * 0.001	X	-1,000 .. 1,000
4029	FBD	L3 $\cos \phi$	Signed 16-bit	R	Data * 0.001	X	-1,000 .. 1,000
4030	FBE	L1 power factor	Signed 16-bit	R	Data * 0.001	X	-1,000 .. 1,000
4031	FBF	L2 power factor	Signed 16-bit	R	Data * 0.001	X	-1,000 .. 1,000
4032	FCO	L3 power factor	Signed 16-bit	R	Data * 0.001	X	-1,000 .. 1,000
4033	FC1	Total power factor	Signed 16-bit	R	Data	X	-1,000 .. 1,000
4034	FC2	Hour	Unsigned 16-bit	R	Data	X	0 .. 23

Appendix 1 cont．

DMM－5T－3：List of registers with measurement results							
Address （Dec）	Address （Hex）	Parameter	Data type	Read／ Write	Multiplier	Unit	Real value
4035	FC3	Minute	Unsigned 16－bit	R	Data	X	$0 . .59$
4036	FC4	Second	Unsigned 16－bit	R	Data	X	0 ．． 59
4037	FC5	Day	Unsigned 16－bit	R	Data	X	1 ．． 31
4038	FC6	Month	Unsigned 16－bit	R	Data	X	1 ．． 12
4039	FC7	Year	Unsigned 16－bit	R	Data	X	2000 ．． 2099
4040	FC8	L1 active import	Unsigned 32－bit			Wh	O．Max
4041	FC9	energy	佰	R	Data	Wh	－．．
4042	FCA	L2 active import				Wh	
4043	FCB	energy	Unsigned 32－bit	R	Data	Wh	O．．Max
4044	FCC	L3 active import					
4045	FCD	energy	Unsigned 32－bit	R	Data	Wh	0 ．．Max
4046	FCE	Total active import					
4047	FCF	energy	Unsigned 32－bit	R	Data	Wh	0 ．．M
4048	FDO	L1 active export	Unsigned 32－bit			Wh	O．Max
4049	FD1	energy	Unsigned 32－bit				O．．Max
4050	FD2	L2 active export	Unsigned 32－bit	R	Data	Wh	O．Max
4051	FD3	energy	Unsigned 32－bit	R	Data	Wh	O．．Max
4052	FD4	L3 active export					
4053	FD5	energy	Unsigned 32－bit	R	Data	Wh	O．．
4054	FD6	Total active export	Unsigned 32－bit			Wh	O．M
4055	FD7	energy	nsigned 32－bit	R	Data	Wh	O．．
4056	FD8	L1 inductive	nned	R	Data	Varh	O．
4057	FD9	energy	Signed 32－bit	R	Data	Varh	O．．
4058	FDA	L2 inductive	Unsigned 32－bit				O．Max
4059	FDB	energy	nsigned 32－bit	R	Data	Varh	O．．Max
4060	FDC	L3 inductive					
4061	FDD	energy	Unsigned 32－bit	R	Data	Varh	0 ．．Max
4062	FDE	Total inductive					
4063	FDF	energy	Unsigned 32－bit	R	Data	Varh	0 ．．Max
4064	FEO	L1 capacitive					
4065	FE1	energy	Unsigned 32－bit	R	Data	Varh	0．．Max
4066	FE2	L2 capacitive					
4067	FE3	energy	Unsigned 32－bit	R	Data	Varh	0 ．．Max
4068	FE4	L3 capacitive		R	D		
4069	FE5	energy	Unsigned 32－bit	R	Data	Varh	0．．Max

Appendix 1 cont．

DMM－5T－3：List of registers with measurement results							
Address （Dec）	Address （Hex）	Parameter	Data type	Read／ Write	Multiplier	Unit	Real value
4070	FE6	Total capacitive					
4071	FE7	energy		R			
4072	FE8	L1 apparent					
4073	FE9	energy	bned 32－bit	R	Data	Vah	．．M
4074	FEA	L2 apparent					
4075	FEB	energy	Unsigned 32－bit	R	Data	Vah	．．M
4076	FEC	L3 apparent	Un	R	Data	Va	－Max
4077	FED	energy	Unsigned 32－bit	R	Data	Vah	O．．Max
4078	FEE	Total apparent					
4079	FEF	energy		R	Dat	Vah	
4080	FFO	L1 THDV	Unsigned 16－bit	R	Data＊0．1	\％	0，0 ．．1000，0
4081	FF1	L2 THDV	Unsigned 16－bit	R	Data＊0．1	\％	0，0 ．．1000，0
4082	FF2	L3 THDV	Unsigned 16－bit	R	Data＊0．1	\％	0，0 ．．1000，0
4083	FF3	3P THDV	Unsigned 16－bit	R	Data＊0．1	\％	0，0 ．．1000，0
4084	FF4	L1 THDI	Unsigned 16－bit	R	Data＊0．1	\％	0，0 ．．1000，0
4085	FF5	L2 THDI	Unsigned 16－bit	R	Data＊0．1	\％	0，0 ．．1000，0
4086	FF6	L3 THDI	Unsigned 16－bit	R	Data＊0．1	\％	0，0 ．．1000，0
4087	FF7	3P THDI	Unsigned 16－bit	R	Data＊0．1	\％	0，0 ．．1000，0

Appendix 2
DMM-5T-3: List of registers with measurement results

DMM-5T-3: List of registers with measurement results							
Address (Dec)	Address (Hex)	Parameter	Data type	Read/ Write	Multiplier	Unit	Real value
2000	7D0	L1 THDV	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2001	7D1	L2 THDV	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2002	7D2	L3 THDV	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2003	7D3	3 P THDV	Unsigned 16-bit	R	Data * 0.1	\%	0,0..400,0
2004	7D4	L1 THDI	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2005	7D5	L2 THDI	Unsigned 16-bit	R	Data * 0.1	\%	0,0..400,0
2006	7D6	L3 THDI	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2007	7D7	3 P THDI	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2011	7DB	VL1 2.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2012	7DC	VL1 3.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2013	7DD	VL1 4.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
...	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
...	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2072	818	VL1 63.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2073	819	VL2 2.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2074	81A	VL2 3.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2075	81B	VL2 4.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
...	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
...	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2134	856	VL2 63.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2135	857	VL3 2.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2136	858	VL3 3.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2137	859	VL3 4.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
...	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
...	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2196	894	VL3 63.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2197	895	IL1 2.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2198	896	IL1 3.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2199	897	IL1 4.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
...	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
...	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2258	8D2	IL1 63.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2259	8D3	IL2 2.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2260	8D4	IL2 3.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2261	8D5	IL2 4.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0

Appendix 2 cont.

DMM-5T-3: List of registers with measurement results							
Address (Dec)	Address (Hex)	Parameter	Data type	Read/ Write	Multiplier	Unit	Real value
2320	910	IL2 63.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2321	911	IL3 2.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2322	912	IL3 3.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2323	913	IL3 4.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
...	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
...	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0
2382	94E	IL3 63.Harmonic	Unsigned 16-bit	R	Data * 0.1	\%	0,0 ..400,0

4ravis

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for $\mathrm{F} \& \mathrm{~F}$ manufacturer:
Other Similar products are found below :
AC-1I 15A AC-1I 5A AS-212 AS-221T AS-223 AS-225 AS-225D AS-B220 ASO-205 AT-1I AT-1U AT-2U AT-3I AV-1I AWZ AWZ30 AZ-112 AZ-112-LED AZ-112 PLUS AZH-LED AZH-MINI-LED AZH-S 12V AZHS-230V BIS-402 BIS-403 BIS-404 BIS-408 230V BIS-408I 230V BIS-409 230V BIS-410 230V BIS-410I 230V BIS-411 230V BIS-411 24V AC/DC BIS-411B BIS-411B-LED BIS-411BM BIS-411BM-LED BIS-411I 230V BIS-411I 24V AC/DC BIS-412 230V BIS-412 24V AC/DC BIS-412I 230V BIS-413 230V BIS-413 24V AC/DC BIS-413I 230V BIS-414 24V AC/DC BIS-419 230V BIS-419I 230V CKF-316 CKF-316-TRMS

