

(

urpose

The MR-RO-1 module is used as an external device that extends relay outputs the PLC programmable controllers or other devices in which data is exchanged via the RS-485 port with MODBUS RTU protocol.
eatures
${ }^{1 \times N O} / \mathrm{NC}$ separated contact

* ON / OFF contro
*timer control options:
delayed activation
delayed activation for a preset time
cyclic operation ON/ OFF
cyclic operation OFF / ON
state memory state after power outage
* automatic start for time function
time of the last output switching
* number output switching
number of executed cycles for time functions

functioning

 ontact). The output operates according to the preset mode of operation and parameters assigned to it. The setting and reading the output status, operation parameters and adjustment of all communication and data xchange parameters is caner is indicated by a green LED U light. Correct data exchange between the module and other device is indicated by the LED yellow Tx light.
operation modes

. ON/OFF
The default mode of module operation in which the output is directly switched on and off using commands sent via Modbus.

1. Delayed activation

 parameter T1 and activates the relay. The relay will shut down after receiving OFF command. Sending the OFF command during the T1 time解 1 or when the relay is already switched on will be ignored.

The relay activates after receiving the ON command, and deactivates when the preset time is up. Next cycle can be initiated by sending the next ON received during T 1 time will be ignored
3. Delayed activation for a preset time

The module starts measuring time T 1 after receiving the ON command and then closes the relay for a time T 2 , after which the relay is switched off. Next cycle after completing the previous one can be activated by sending another ON command. Sending the OFF command OFF breaks the execution of the cycle and turns off the relay. The ON command received during cycle execution will be ignored.
4. OFF/ON cycle

Cyclic operations OUT OFF (relay off) for the time T1 and OUT ON (relay on) for the time T 2 . The cycle is started by sending the ON command. The number of executed cycles depends on the 0×235 registry value. If this register is set to 0 , the program will be executed cyclically until the OFF
command is sent. If this registry value is other than zero (max. 65535), the command is sent. If this registry value is other tha zero (max. 65535), the Sending the OFF command during the cycle breaks its execution and turns off the relay. The ON command received during cycle execution will be ignored. After the programmed number of cycles the next ON command starts the program from the beginning
5. ON/OFF cycle

Cyclic operations OUT ON (relay on) for the time T1 and OUT OFF (relay off) for the time $T 2$. The cycle is started by sending the ON command. The number of executed cycles depends on the 0×235 registry value. If this register is set to 0 , the program will be executed cyclically until the OFF command is sent. If this registry value is other than zero (max. 65535), the Sending the OFF command during the cycle breaks its execution and turns off the relay. The ON command received during cycle execution will be ignored. After the programmed number of cycles the next ON command starts the program from the beginning

STATE MEMORY AND AUTOMATIC START
The active memory of the state restores the state of the program from before the power outage when the power is back on. State memory sets the contact in position from before the power outage for the 0 mode. Setting the state memory for modes $1-5$ means that if at the time of the power outage the program was in progress, then when the power is restored it will be aunched from the beginning.
inactive) is the automatic execution of the selected operating mode after switching on the power supply of the module.

IN/OUT description

${ }_{4-6}^{1-3}$ converter power supply
RS-485 serial port
COM contact
1 COM contact input
$\begin{array}{ll}10 & \text { normally closed (NC) contact } \\ 12 & \text { normally open (NO) contact }\end{array}$

Connection implementation
Activation with normally open contact (active)

Protection

1. Galvanic isolation between the contacts of the relay and the system power supply and communication path (min. 3 kV).
2. No galvanic isolation between power supply and $\mathrm{RS}-485$ line
3. Overcurrent protection of power supply input and communication input (up to a maximum of 60 VDC) with automatic return feature.

Instalation

1. Set the selected MODBUS communication parameters and communications parameters prior to unitinstallation 2. Disconnect the power in the d
2. Install the module on the rail.
3. Connect the module power supply in accordance with the indications: $1(+) / 2(-)$ 5. Connect signal output $A(4) / B(6)$ to the MASTER output of another device.

esetcommanicationsering

e configuration jumper is located under the front casing of the module. Activatin he controller with jumper closed will restore factory settings of the communication arameters. To do this, remove the front casing of the module and put the jumper ap on both pins. When the reset is done, remove the jumper

Specifications

supply voltage	$9 \div 30 \mathrm{~V}$ DC
output	
contact	separated $1 \times \mathrm{NO} / \mathrm{NC}$
AC-1 load	<16A
port	RS-485
communication protocol	Modbus RTU
operation mode	stave
indication	
power	green LED
communication	yellow LED
power consumption	$<0.3 \mathrm{~W}$
working temperature	$-20 \div 50^{\circ} \mathrm{C}$
terminal	$2.5 \mathrm{~mm}^{2}$ screw terminals
tightening torque	0.4 Nm
dimensions	dule (18 mm)
mounting	on TH-35

contact
AC-1 load
communication protocol
eeration mode
power
ghtening torque
module $(18 \mathrm{~mm}$
on TH-35 ral
ingress protection

Communication parameters	
Protocol	MODBUS RTU
peration mode	SLAVE
Port settings (factory settings)	```bit/s: \(1200 / 2400 / 4800 / 9600 / 19200 / 38400\) /57600/115200 Data bits: 8 Parity: NONE/EVEN/ODD Start bits: 1 Stop bits: \(1 / 1.5\) / \(\underline{\mathbf{2}}\)```
Range of network addresses factory setting)	1 1245 (1)
Command codes	1: Input state reading (0×01-Read Coils) 3: Registers group reading (0×03-Read Holding Register) 5: Output states recording (Write Single Coils) 6: Single register value setting (0×06) - Write Single Register)
Maximum frequency of queries	15Hz

Communication registers							
address	description	funct.	type	atr			
256	Reading of current one and recording of new base address: $1 \div 245$	$\begin{aligned} & 03 \\ & 06 \\ & \hline \end{aligned}$	int	$\begin{aligned} & \substack{\text { read } \\ \text { write }} \end{aligned}$			
257	Reading of current one and recording of new transmission rate: 0:1200 / 1:2400/ 2:4800 / 3:9600 / 4:19200 / 5:38400 / 6:57600 / 7:115200	$\begin{aligned} & 03 \\ & 06 \\ & 06 \end{aligned}$	int	$\begin{aligned} & \text { read } \\ & \text { write } \end{aligned}$			
258	Reading of current one and recording of new parity value: 0 :NONE / 1:EVEN / 2:ODD	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	$\begin{aligned} & \text { read } \\ & \text { write } \end{aligned}$			
259	Reading of current one and recording of new stop bits quantity: 0:1bit / 1:1.5bit / 2:2bits	$\begin{aligned} & 03 \\ & 06 \end{aligned}$	int	$\begin{aligned} & \text { read } \\ & \text { write } \end{aligned}$			
260	Factory settings: Enter 1.	06	int	write			
Please note! Any change in communication parameters (transmission rate quantity of stop bits, parity) will be applied only after power restart.							
1024-1025	$\begin{aligned} & \text { Module operation time }[\mathrm{s}] \\ & \mathrm{R} 1024 \times 256^{2}+\mathrm{R} 1024 \end{aligned}$	03	int	read			
1026-1027	Serial number R1026×256 ${ }^{2}$ +R1027	03	int	read			
1028	Production date: 5 bits-day; 4 bits-month; 7 bits-year (without 2000)	03	int	read			
1029	Software version	03	int	read			
1030	Completion: 0-Lo; 1- Hi.	03	int	read			
1031-1035	Identifier: F\& \| F	MB	-4	DI	03	int	rea
1039	Configuration jumper: 0-open; 1-closed	03	int	read			
The transducer does not support broadcast commands (address 0).							

Configuration registers				
address	description	func.	type	atrib.
512	Out1: operation mode 0- ON/OFF; 1-delayed activation; 2 - activation for a preset time; 3 - delayed activation for a preset time; 4-OFF/ON cycle; 5- ON/OFF cycle.	03/06	int	$\begin{aligned} & \text { read } \\ & \text { write } \end{aligned}$
513	Out1: time base V1 ($1 \div 65$ 535) T 1 time $=\mathrm{V} 1 \times \mathrm{F} 1$	03/06	int	$\begin{gathered} \text { read } \\ \text { werito } \end{gathered}$
514	$\begin{aligned} & \text { Out1: multiplier F1 } \\ & 0-\times 0,1(\mathrm{~T} 1: 0,1 \div 653,55) \\ & 1-\times 1(\mathrm{~T} 111 \div 655355) \\ & \hline \end{aligned}$	03/06	int	$\begin{aligned} & \text { read } \\ & \text { write } \end{aligned}$
515	Out1: time base V2 ($1 \div 65$ 535) T2 time = V2 \times F2	03/06	int	${ }^{\text {read }}$
516	Out1: multiplier F2 $0-\times 0,1$ (T2: $0,1 \div 6553,55$ s $1-\times 1($ T2: $1 \div 65535 \mathrm{~s})$	03/06	int	$\begin{aligned} & \text { read } \\ & \text { write } \end{aligned}$
517	Out1: number of ON/OFF cycles for modes 4 and 5 (1:65 535) Value 0 - continuous operation (unlimited number of cycles)	03/06	int	$\begin{aligned} & \text { read } \\ & \text { write } \end{aligned}$
518	Out1: State memory. 0 - inactive; 1 - active.	03/06	int	$\begin{aligned} & \text { read } \\ & \text { write } \end{aligned}$
519	Out1: Automatic start. 0 - inactive; 1 - active.	03/06	int	$\begin{gathered} \substack{\text { read } \\ \text { write }} \end{gathered}$

Output registers

selected operating mode. ((0x0000) breaks the execution of the selected
Entering the OFF command Entering the OfF command (Ox000
program and opens the contact.

1	Out1: output state reading ON/OFF 0 -contact open 1-contact closed	03	int	read
16/17	Out1: contact closing counter [s] R17×256²+R16	03	int	read
32/33	Out1: time of the last contact closing [s] R33 $\times 256^{2}+$ R32	03	int	read
48/49	Out1: total time of contact switching [s] R49×256²+R48	03	int	read
64/65	Out1: number of the completed program cycles (applies to mode 4 and 5) $R 65 \times 256^{2}+\mathrm{R} 64$	03	int	read
Please note!				

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for $\mathrm{F} \& \mathrm{~F}$ manufacturer:
Other Similar products are found below :
AC-1I 15A AC-1I 5A AS-212 AS-221T AS-223 AS-225 AS-225D AS-B220 ASO-205 AT-1I AT-1U AT-2U AT-3I AV-1I AWZ AWZ30 AZ-112 AZ-112-LED AZ-112 PLUS AZH-LED AZH-MINI-LED AZH-S 12V AZHS-230V BIS-402 BIS-403 BIS-404 BIS-408 230V BIS-408I 230V BIS-409 230V BIS-410 230V BIS-410I 230V BIS-411 230V BIS-411 24V AC/DC BIS-411B BIS-411B-LED BIS-411BM BIS-411BM-LED BIS-411I 230V BIS-411I 24V AC/DC BIS-412 230V BIS-412 24V AC/DC BIS-412I 230V BIS-413 230V BIS-413 24V AC/DC BIS-413I 230V BIS-414 24V AC/DC BIS-419 230V BIS-419I 230V CKF-316 CKF-316-TRMS

