Product Specification

1000BASE-T Copper GBIC Transceivers

FCL-8520/8521-3

Product Features

- Up to $1.25 \mathrm{~Gb} / \mathrm{s}$ bi-directional data links
- RoHS compliant and Lead Free
- Extended operating temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$
- Hot-pluggable
- Fully metallic enclosure for low EMI
- Low power (1.5W typical)
- Access to physical layer IC via 2wire serial bus

Applications

- 1.25 Gigabit Ethernet over Cat 5 cable

Finisar's FCL-8520/8521-3 1000BASE-T Copper GBIC transceivers are based on the GBIC Specification Revision 5.5^{1}. They are compatible with the Gigabit Ethernet and 1000BASE-T standards as specified in IEEE Std $802.3 \mathrm{z}^{2}$ and IEEE Std 802.3ab ${ }^{3}$.

The FCL-8520-3 uses the GBIC's RX_LOS pin for link indication, and 1000BASE-X auto-negotiation must be disabled on the host system. The FCL-8521-3 is compatible with 1000BASE-X auto-negotiation, but does not have a link indication feature (RX_LOS is internally grounded). See AN-2032, "Commonly Asked Questions Regarding Auto-negotiation on Finisar’s 1000BASE-T GBICs" ${ }^{4}$, for a more complete explanation on the differences between the two models.

PRODUCT SELECTION

Part Number	Link Indicator on RX_LOS Pin	Compatible with 1000BASE-X Auto-negotiation
FCL-8520-3	Yes	No
FCL-8521-3	No	Yes

I. GBIC to Host Connector Pin Out

Pin Name	Pin \#	Sequence
RX_LOS*	1	2
GND	2	2
GND	3	2
MOD_DEF(0)	4	2
MOD_DEF(1)	5	2
MOD_DEF(2)	6	2
TX_DISABLE	7	2
GND	8	2
GND	9	2
GND	10	2
GND	11	1
-RX_DAT	12	1
+ RX_DAT	13	1
GND	14	1
$V_{\text {CC }}$	15	2
$V_{\text {CC }}$	16	2
GND	17	1
+ TX_DAT	18	1
TX_DAT	19	1
GND	20	1

Note: RX_LOS is used for link indication on the FCL-8520-3, and is internally grounded on the FCL-8521-3

Table 1. GBIC to host connector pin assignment
"Sequence" indicates the order in which pins make contact when the device is hot plugged. For additional information, see "Table 3: Signal Definitions" in the GBIC Specification Revision 5.5. ${ }^{1}$

II. +5V Volt Electrical Power Interface

The FCL-8520/8521-3 has an extended input voltage range of 4.5 to 5.5 V , compared to the GBIC standard of 4.25 to 5.25 V . The 6 V maximum voltage is not allowed for continuous operation.

+5 Volt Electrical Power Interface						
Parameter	Symbol	Min	Typ	Max	Units	Notes/Conditions
Supply Current	I_{s}		310	375	mA	1.7W max power over full range of voltage and temperature. See Note 1.
Input Voltage						Referenced to GND.
Maximum Voltage	$\mathrm{V}_{\mathrm{max}}$			6	V	
Surge Current	$\mathrm{I}_{\text {surge }}$			450	mA	Hot plug. See Note 1.

Table 2. +5 Volt electrical power interface
Note:

1. Caution: Power consumption and inrush current are higher than the specified values in the GBIC Specification Rev 5.5 ${ }^{1}$.

III. Low-Speed Signals

RX_LOS is a TTL signals as described in Table 3 and 4. MOD_DEF(1) (SCL) and MOD_DEF(2) (SDA), are open drain CMOS signals (see section VII, "Serial Communication Protocol"). Both MOD_DEF(1) and MOD_DEF(2) must be pulled up to host_Vcc. For more detailed information, see sections 5.3.1 - 5.3.8 in the GBIC Specification Rev. 5.5^{1}.

Low-Speed Signals, Electronic Characteristics					
Parameter	Symbol	Min	Max	Units	Notes/Conditions
GBIC Output LOW	$\mathrm{V}_{\text {OL }}$	0	0.5	V	4.7k to 10k pull-up to host_Vcc, measured at host side of connector
GBIC Output HIGH	$\mathrm{V}_{\text {OH }}$	host_Vcc - 0.5	host_Vcc + 0.3	V	4.7k to 10 k pull-up to host_Vcc, measured at host side of connector
GBIC Input LOW	$\mathrm{V}_{\text {IL }}$	0	0.8	V	4.7 k to 10 k pull-up to Vcc, measured at GBIC side of connector
GBIC Input HIGH	$\mathrm{V}_{\text {IH }}$	2	Vcc +0.3	V	4.7k to 10 k pull-up to Vcc, measured at GBIC side of connector

Table 3. Low-speed signals, electronic characteristics

High-Speed Electrical
 Interface,

Transmission Line-GBIC

Parameter	Symbol	Min	Typ	Max	Units	Notes/Conditions
Line Frequency	f_{L}		125		MHz	5-level encoding, per IEEE 802.3ab.
Tx Output Impedance	$\mathrm{Z}_{\text {out,Tx }}$		100		Ohm	Differential, for all frequencies between 1 MHz and 125MHz.
Rx Input Impedance	$\mathrm{Z}_{\text {in,RX }}$		100		Ohm	Differential, for all frequencies between 1 MHz and 125MHz.

Table 4. High-speed electrical interface, transmission line-GBIC

IV. High-Speed Electrical Interface

All high-speed signals are AC-coupled internally.

High-Speed Electrical Interface,
Host-GBIC

Parameter	Symbol	Min	Typ	Max	Units	Notes/Conditions
Differential Input Voltage	$\mathrm{V}_{\text {indiff }}$	0.50		2.00	V	Differential peak - peak
Differential Output Voltage	$\mathrm{V}_{\text {outdiff }}$	0.37		2.00	V	Differential peak - peak
Rise/Fall Time	$\mathrm{T}_{\mathrm{r}} \mathrm{T}_{\mathrm{f}}$		250		psec	$20 \%-80 \%$ Differential
Tx Input Impedance	$\mathrm{Z}_{\text {in }}$		75		Ohm	
Rx Output Impedance	$\mathrm{Z}_{\text {out }}$		75		Ohm	

Table 5. High-speed electrical interface, host-GBIC

V. General Specifications

General						
Parameter	Symboo	Min	Typ	Max	Units	Notes/Conditions
Data Rate	BR			1.25	Gb/sec	IEEE 802.3 compatible.
Cable Length	L			100	m	Category 5 UTP. BER $<10^{-10}$

Table 6. General specifications

Notes:

1. Clock tolerance is $\pm 50 \mathrm{ppm}$
2. The FCL-8520/8521-3 is a full-duplex device in the "Preferred Master" mode.
3. Automatic crossover detection is enabled. External crossover cable is not required

VI. Environmental Specifications

The FCL-8520/8521-3 has an extended range from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ case temperature as specified in Table 8.

$|$| Environmental
 Specifications | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| Parameter | Symbol | Min | Typ | Max | Units | Notes/Conditions |
| Operating Temperature | T_{op} | 0 | | 75 | ${ }^{\circ} \mathrm{C}$ | Case temperature |
| Storage Temperature | $\mathrm{T}_{\mathrm{sto}}$ | -40 | | 85 | ${ }^{\circ} \mathrm{C}$ | Ambient temperature |

Table 7. Environmental specifications

VII. Serial Communication Protocol

All Finisar GBICs are 'Module Definition "4"' and support the 2-wire serial communication protocol outlined in the GBIC Specification ${ }^{1}$. These GBICs use an Atmel AT24C01A 128 byte E ${ }^{2}$ PROM with an address of A0h. For details on interfacing with the E^{2} PROM, see the Atmel data sheet titled "AT24C01A/02/04/08/16 2-Wire Serial CMOS E ${ }^{2}$ PROM." ${ }^{5}$

The 1000BASE-T physical layer IC can also be accessed via the 2-wire serial bus at address A4h. For details interfacing with the PHY IC, see Marvell data sheet titled "Alaska Ultra 88E1011/88E1001S Integrated Gigabit Ethernet Transceiver" ${ }^{\text {(Marvell }}$ document number MV-5100281-00).

Serial Bus Timing Requirements
Parameter
:---
Units

Table 8. Serial bus timing requirements

VIII. Mechanical Specifications

The host-side of the FCL-8520/8521-3 conforms to the mechanical specifications outlined in the GBIC Specification Revision 5.5, Section 6^{1}. The front portion of the GBIC (part extending beyond the face plate of the host) is larger to accommodate the RJ45 connector. See Figure 1 below for details.

Figure 1. FCL-8520/8521-3 mechanical dimensions

IX. References

1. "Gigabit Interface Converter (GBIC) Revision 5.5". Sun Microsystems Computer Company et. al., September 27, 2000. http://playground.sun.com/pub/OEmod/
2. IEEE Std 802.3z. IEEE Standards Department, 2000.
3. "IEEE Std 802.3ab-1999 'Physical Layer Parameters and Specifications for 1000 Mb / s Operation Over 4-Pair of Category 5 Balanced Copper Cabling, Type 1000BASE-T". IEEE Standards Department, 1999.
4. "Application Note AN-XXXX: Commonly Asked Questions Regarding Autonegotiation on Finisar's 1000BASE-T GBICs", Finisar Corporation, February 2003
5. "AT24C01A/02/04/08/16 2-Wire Serial CMOS E²PROM". Atmel Corporation. www.Atmel.com
6. "Alaska Ultra 88E1011/88E1001S Integrated 10/100/1000 Gigabit Ethernet Transceiver". Marvell Corporation. www.marvell.com

X. For More Information

Finisar Corporation
1389 Moffett Park Drive
Sunnyvale, CA 94089-1133
Tel. 1-408-548-1000
Fax 1-408-541-6138
sales@finisar.com
www.finisar.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Fiber Optic Transmitters, Receivers, Transceivers category:
Click to view products by Finisar manufacturer:
Other Similar products are found below :
FWLF-1521-7D-47 FWLF-1521-7D-61 HFBR-1532ETZ HFBR-2541ETZ HFBR-2602Z AFBR-0548Z AFBR-1639Z AFBR-1539Z AFBR2634Z AFCT-5962ATLZ FTLX3813M354 HFBR-2531ETZ STV.2413-574-00262 TRPRG1VA1C000E2G TORX1952(6M,F) TOTX1350(F) TOTX1350(V,F) FTLX3813M349 HFBR-2542ETZ SCN-1428SC AFBR-POC406L HFBR-2506AFZ FTLX1871M3BNL FWLF-1521-7D-49 HFBR-1542ETZ FWLF-1519-7D-49 HFBR-2532ETZ AFBR-1541CZ TORX1355(V,F) AFBR-1521CZ LTK-ST11MB TORX1355(F) HFD8003-002/XBA HFD3020-500-ABA S6846 SCN-2638SC FTL410QE4N SCN-1570SC SCN-1601SC SCN-1338SC HFBR-1505CFZ AFBR-1528CZ AFBR-1531CZ HFD3081-108-XBA HFD8003-500-XBA SCN-1255SC SCN-1383SC $1019682 \underline{1019683}$ 1019705

