

Product Specification

40BASE-SR4/10GBASE-SR 300m QSFP+ Gen4 Optical Transceiver Module

FTL410QD4C

PRODUCT FEATURES

- Four-channel full-duplex transceiver module
- Hot Pluggable QSFP+ form factor
- Maximum link length of 300m on OM3 Multimode Fiber (MMF) and 400m on OM4 MMF
- Multirate capability: 1.06Gb/s to 10.5Gb/s per channel
- Unretimed XLPPI electrical interface
- Max power dissipation <1W
- Reliable VCSEL array technology
- Built-in digital diagnostic functions, including Tx and Rx power monitoring
- Commercial operating case temperature range: 0°C to 70°C
- Single 1x12 MPO receptacle
- RoHS-6 Compliant

APPLICATIONS

- 40GBASE-SR4 40G Ethernet
- Breakout to 10GBASE-SR Ethernet
- Proprietary interconnections

Finisar's FTL410QD4C QSFP+ transceiver modules are designed for use in 40 Gigabit per second links over parallel multimode fiber, including breakout to four 10 Gigabit per second links. They are compliant with the QSFP+ MSA^{1,2} and IEEE 802.3ba 40GBASE-SR4³ and compatible with IEEE 802.3ae 10GBASE-SR⁴. Digital diagnostics functions are available via an I2C interface, including Tx and Rx power monitoring. The transceiver is compliant per the RoHS Directive 2011/65/EU⁵. See Finisar Application Note AN-2038⁶ for more details.

PRODUCT SELECTION

FTL410QD4C

I. Pin Descriptions

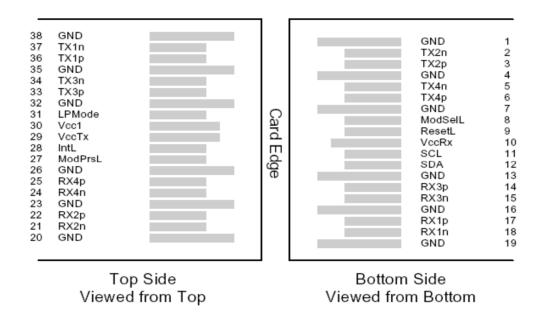


Figure 1 – QSFP+ MSA-compliant 38-pin connector

Pin	Symbol	Name/Description	Notes
1	GND	Ground	1
2	Tx2n	Transmitter Inverted Data Input	
3	Tx2p	Transmitter Non-Inverted Data Input	
4	GND	Ground	1
5	Tx4n	Transmitter Inverted Data Input	
6	Tx4p	Transmitter Non-Inverted Data Input	
7	GND	Ground	1
8	ModSelL	Module Select	
9	ResetL	Module Reset	
10	Vcc Rx	+3.3 V Power supply receiver	
11	SCL	2-wire serial interface clock	
12	SDA	2-wire serial interface data	
13	GND	Ground	1
14	Rx3p	Receiver Non-Inverted Data Output	
15	Rx3n	Receiver Inverted Data Output	
16	GND	Ground	1
17	Rx1p	Receiver Non-Inverted Data Output	
18	Rx1n	Receiver Inverted Data Output	
19	GND	Ground	1
20	GND	Ground	1
21	Rx2n	Receiver Inverted Data Output	
22	Rx2p	Receiver Non-Inverted Data Output	
23	GND	Ground	1
24	Rx4n	Receiver Inverted Data Output	
25	Rx4p	Receiver Non-Inverted Data Output	
26	GND	Ground	1

27	ModPrsL	Module Present	
28	IntL	Interrupt	
29	Vcc Tx	+3.3 V Power supply transmitter	
30	Vcc1	+3.3 V Power Supply	
31	LPMode	Low Power Mode	
32	GND	Ground	1
33	Tx3p	Transmitter Non-Inverted Data Input	
34	Tx3n	Transmitter Inverted Data Input	
35	GND	Ground	1
36	Tx1p	Transmitter Non-Inverted Data Input	
37	Tx1n	Transmitter Inverted Data Input	
38	GND	Ground	1

Notes

1. Circuit ground is internally isolated from chassis ground.

II. General Product Characteristics

Parameter	Value	Unit	Notes
Module Form Factor	QSFP+		
Number of Lanes	4 Tx and 4 Rx		
Maximum Aggregate Data Rate	42.0	Gb/s	
Maximum Data Rate per Lane	10.5	Gb/s	Higher bit rates may be supported. Please contact Finisar.
Protocols Supported	Typical applications include 40G Ethernet, Infiniband, Fibre Channel, SATA/SAS3		
Electrical Interface and Pin-out	38-pin edge connector		Pin-out as defined by the QSFP+ MSA ²
Maximum Power Consumption	1.0	Watts	Varies with output voltage swing and pre-emphasis settings
Management Interface	Serial, I2C-based, 400 kHz maximum frequency		As defined by the QSFP+ MSA ²

Data Rate Specifications	Symbol	Min	Тур	Max	Units	Ref.
Bit Rate per Lane	BR	1062		10500	Mb/sec	1
Bit Error Ratio	BER			10-12		2
Link distance on OM3 MMF	d			300	meters	3
Link distance on OM4 MMF	d			400	meters	3

Notes:

- 1. Compliant with 40G and 10G* Ethernet. Compatible with 1 Gigabit Ethernet and 1/2/4/8/10G Fibre Channel.
- 2. Tested with a PRBS 2³¹-1 test pattern.
- 3. Per 40GBASE-SR4 and 10GBASE-SR IEEE 802.3ba
- * Max launch power exceeds 10G Ethernet specification by 1 dB, which is well within the guardband of receiver overload.

III. Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc1,	-0.5		3.6	V	
	VccTx,					
	VccRx					
Storage Temperature	T_{S}	-40		85	°C	
Case Operating Temperature	T_{OP}	0		70	°C	
Relative Humidity	RH	0		85	%	1
Damage Threshold, per Lane	DT	3.4			dBm	

Notes:

1. Non-condensing.

IV. Electrical Characteristics ($T_{OP} = 0$ to 70°C, $V_{CC} = 3.15$ to 3.45 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	Vcc1,					
	VccTx,	3.15		3.45	V	
	VccRx					
Supply Current	Icc			300	mA	
Link turn-on time						
Transmit turn-on time				2000	ms	1
Transmitter (per Lane)						
Single ended input voltage tolerance	VinT	-0.3		4.0	V	
Differential data input swing	Vin,pp	180		1200	mVpp	2
Differential input threshold			50		mV	
AC common mode input voltage tolerance		15			mV	
(RMS)		13			III V	
Differential input return loss		Per	IEEE P802	2.3ba,	dB	3
		Sec	ction 86A.	4.1.1	uБ	י
J2 Jitter Tolerance	Jt2	0.17			UI	
J9 Jitter Tolerance	Jt9	0.29			UI	
Data Dependent Pulse Width Shrinkage	DDPWS	0.07			UI	
Eye mask colordinates {X1, X2			0.11, 0.3		UI	4
Y1, Y2}			95, 350		mV	4
Receiver (per Lane)						
Single-ended output voltage		-0.3		4.0	V	
Differential data output swing	Vout,pp	0		800	mVpp	5,6
AC common mode output voltage (RMS)				7.5	mV	
Termination mismatch at 1 MHx				5	%	
Differential output return loss		Per	IEEE P802	2.3ba,	dB	3
		Sec	ction 86A.	4.2.1	uБ	י
Common mode output return loss		Per	IEEE P802	2.3ba,	dB	3
		Section 86A.4.2.2		4.2.2	uБ	י
Output transition time, 20% to 80%		28			ps	
J2 Jitter output	Jo2			0.42	UI	
J9 Jitter output	Jo9			0.65	UI	
Eye mask coordinates #1 {X1, X2			0.29, 0.5		UI	4
Y1, Y2}			150, 425		mV	4
Power Supply Ripple Tolerance	PSR	50			mVpp	

Notes:

- 1. From power-on and end of any fault conditions.
- 2. After internal AC coupling. Self-biasing 100Ω differential input.
- 3. 10 MHz to 11.1 GHz range
- 4. Hit ratio = $5 \times 10E-5$.
- 5. AC coupled with 100Ω differential output impedance.
- 6. Settable in 4 discrete steps via the I2C interface.

V. Optical Characteristics ($T_{OP} = 0$ to 70° C, $V_{CC} = 3.15$ to 3.45 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter (per Lane)						
Signaling Speed per Lane		1.00	10.3125	10.5	GBd	
Center wavelength		840		860	nm	
RMS Spectral Width	SW			0.40	nm	
Average Launch Power per Lane	TXP_x	-7.5		0	dBm	1
Transmit OMA per Lane	TxOMA			3.0	dBm	2
Difference in Power between any two	DP_x			4.0	dB	
lanes [OMA]						
Peak Power per Lane	PP_x			4.0	dBm	
Launch Power [OMA] minus TDP per	P-TDP	-6.5			dBm	
Lane						
TDP per Lane	TDP _{SR4}			3.5	dB	3
1DF per Lane	TDP_{SR}			3.9	uБ	4
Optical Extinction Ratio	ER	3.0			dB	
Optical Return Loss Tolerance	ORL			12	dB	
Encircled Flux	FLX	>	86% at 19 u	m	dBm	
		<	30% at 4.5 u	m		
Average launch power of OFF				-30	dBm	
transmitter, per lane						
Relative Intensity Noise	RIN			-128	dB/Hz	
Transmitter eye mask definition {X1, X2, X3, Y1, Y2, Y3}		0.23, 0.3	34, 0.43, 0.27,	0.35, 0.4		

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Receiver (per Lane)						
Signaling Speed per Lane		1.00	10.3125	10.5	GBd	
Center wavelength		840		860	nm	
Damage Threshold	DT	3.4			dBm	
Average Receive Power per Lane	RXP_x	-9.9		2.4	dBm	
Receive Power (OMA) per Lane	RxOMA			3.0	dBm	
Unstressed Receiver Sensitivity	URS			-11.1	dBm	
(OMA) per Lane						
Stressed Receiver Sensitivity (OMA)	SRS			-7.5	dBm	
per Lane						
Peak Power, per lane	PP_x			4	dBm	
Receiver Reflectance	Rfl			-12	dB	
Vertical eye closure penalty, per lane				3.5	dB	
Stressed eye J2 jitter, per Lane				0.3	UI	
Stressed eye J9 jitter, per Lane				0.47	UI	
OMA of each aggressor lane				-0.4	dBm	

Rx jitter tolerance: Jitter frequency		(75, 5)		kHz, UI	
and p-p amplitude		(375, 1)		kHz, UI	
LOS De-Assert	LOS_D		-12	dBm	
LOS Assert	LOS _A	-30		dBm	
LOS Hysteresis		0.5		dBm	

Notes:

- 1. The maximum launch power of 0 dBm is well within the guardband of receiver overload specifications for commercially available 10GBASE-SR SFP+ transceivers from Finisar and other vendors.
- 2. Even if TDP is <0.9dB, the OMA min must exceed the value given in the table below:

Center		RMS Spectral width (nm)										
Wavelength (nm)	Up to 0.05	0.05 to 0.1	0.1 to 0.15	0.15 to 0.2	0.2 to 0.25	0.25 to 0.3	0.3 to 0.35	0.35 to 0.4	0.4 to 0.45			
840 to 842	-4.2	-4.2	-4.1	-4.1	-3.9	-3.8	-3.5	-3.2	-2.8			
842 to 844	-4.2	-4.2	-4.2	-4.1	-3.9	-3.8	-3.6	-3.3	-2.9			
844 to 846	-4.2	-4.2	-4.2	-4.1	-4.0	-3.8	-3.6	-3.3	-2.9			
846 to 848	-4.3	-4.2	-4.2	-4.1	-4.0	-3.8	-3.6	-3.3	-2.9			
848 to 850	-4.3	-4.2	-4.2	-4.1	-4.0	-3.8	-3.6	-3.3	-3.0			
850 to 852	-4.3	-4.2	-4.2	-4.1	-4.0	-3.8	-3.6	-3.4	-3.0			
852 to 854	-4.3	-4.2	-4.2	-4.1	-4.0	-3.9	-3.7	-3.4	-3.1			
854 to 856	-4.3	-4.3	-4.2	-4.1	-4.0	-3.9	-3.7	-3.4	-3.1			
856 to 858	-4.3	-4.3	-4.2	-4.1	-4.0	-3.9	-3.7	-3.5	-3.1			
858 to 860	-4.3	-4.3	-4.2	-4.2	-4.1	-3.9	-3.7	-3.5	-3.2			

- 3. This TDP is up to 100m on OM3 and 150m on OM4.
- 4. This TDP is up to 300m on OM3 and 400m on OM4.

VI. Memory Map and Control Registers

Compatible with the SFF-8436 QSFP+ MSA¹ and the SFF-8636 Common Management Interface MSA². See Finisar Application Note AN-2119⁷ for a complete EEPROM memory map.

VII. Environmental Specifications

Finisar FTL410QD4C transceivers have an operating temperature range from 0°C to +70°C case temperature.

Environmental Specifications	Symbol	Min	Typ	Max	Units	Ref.
Case Operating Temperature	T_{op}	0		70	°C	
Storage Temperature	T_{sto}	-40		85	°C	

VIII. Regulatory Compliance

Finisar FTL410QD4C transceivers are RoHS-6 Compliant. Copies of certificates are available at Finisar Corporation upon request.

FTL410QD4C transceiver modules are Class 1 laser eye safety compliant per IEC 60825-1.

IX. Mechanical Specifications

The FTL410QD4C mechanical specifications are compliant to the QSFP+ MSA² transceiver module specifications.

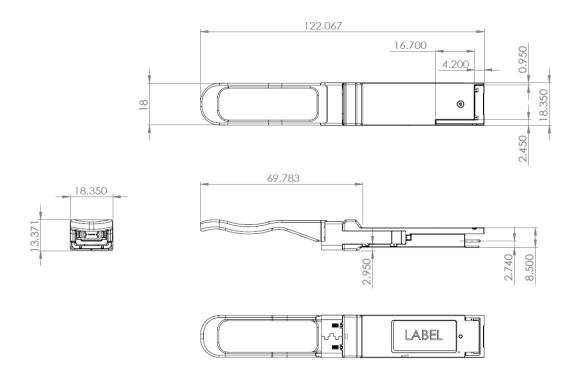


Figure 2 - FTL410QD4C mechanical drawing

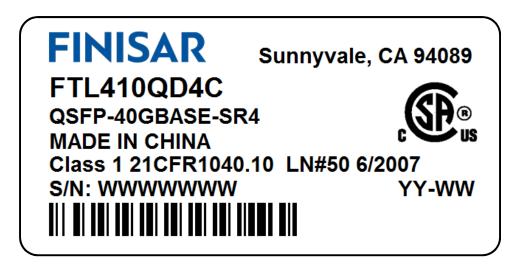


Figure 3 – FTL410QD4C product label

The optical port is a male MPO connector receptacle, with fiber lane assignments as shown in Figure 4.

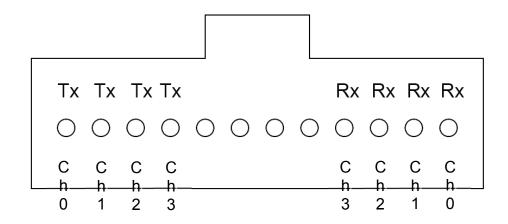


Figure 4 – FTL410QD4C optical lane assignment (front view of MPO receptacle)

X. References

- 1. SFF-8436 Specification for QSFP+ 10 Gbs 4x Pluggable Transceiver, Rev 4.8, October 2013.
- 2. SFF-8636 Specification for Common Management Interface, Rev 2.4, November 2014.
- 3. IEEE 802.3ba PMD Type 40GBASE-SR4.
- 4. IEEE 802.3ae PMD Type 10GBASE-SR.
- 5. Directive 2011/65/EU of the European Council Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment," June 8, 2011, which supercedes the previous RoHS Directive 2002/95/EC.
- 6. "Application Note AN-2038: Finisar Implementation of RoHS Compliant Transceivers", Finisar Corporation, January 21, 2005.
- 7. "Application Note AN-2119: QSFP+ 3rd Generation SR4 Transceiver EEPROM Mapping", Rev. B, Finisar Corporation, January, 2015.

XI. For More Information

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Fibre Optic Transmitters, Receivers, Transceivers category:

Click to view products by Finisar manufacturer:

Other Similar products are found below:

STV.2413-574-00262 TRPRG1VA1C000E2G TOTX1350(V,F) FTLX3813M349 SCN-1428SC LTK-ST11MB HFD8003-002/XBA

HFD3020-500-ABA FTLF1429P3BCVA S6846 SCN-2638SC FTL410QE4N FTLC9555FEPM TQS-QG4H9-J83 SCN-1570SC SCN
1601SC SCN-1338SC SFPPT-SR3-01 HFD8003-500-XBA SCN-1383SC 2333569-1 LNK-ST11HB-R6 FTL4C1QL3L FTL4C1QE3L

FTL4C1QL3C SPTSHP3PMCDF SPTSBP4LLCDF SPTMBP1PMCDF SPTSHP2PMCDF SF-NLNAMB0001 SPTSLP2SLCDF

SPTSQP4LLCDF 1019682 1019683 1019705 HFBR-1415Z AFBR-5803ATQZ AFBR-5803ATZ PLR135/T9 TGW-Q14BB-FCQ AFBR
5803AZ TQS-Q1LH8-XCA03 TQS-Q1LH8-XCA05 TQS-Q1LH8-XCA10 TQS-Q1LH9-2CA HFBR-1414Z HFBR-1527Z HFBR-1528Z

HFBR-2406Z HFBR-2505AZ