

Features

- $\varnothing 0.500 \mathrm{~mm}$ active area
- Low noise
- High gain
- Long term stability

Description

The AD500-9-8015 TO52 is an Avalanche Photodiode Amplifier Hybrid containing a $0.196 \mathrm{~mm}^{2}$ active area APD chip integrated with an internal transimpedance amplifier. Hermetically packaged in a TO-52 with a flat borosilicate glass window cap.

Applications

- Precision photometry
- Analytical instruments
- Medical equipment
- Low light sensor

Absolute maximum ratings

Symbol	Parameter	Min	Max	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temp	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {Op }}$	Operating Temp	0	+60	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {soldering }}$	Soldering Temp	-	+240	${ }^{\circ} \mathrm{C}$
P	Power Dissipation	-	360	mW
$\mathrm{~V}_{\mathrm{cc}}$	Single Supply Voltage	+4.5	+11	V
I_{cc}	Supply Current	-	26	mA

Schematic

Spectral response @ M = 100

Electro-optical characteristics @ $23^{\circ} \mathrm{C}\left(V_{c \mathrm{c}}=\right.$ single supply $+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \mathrm{~W}$ unless otherwise specified)

Symbol	Characteristic	Test-Condition	Min	Typ	Max	Unit
$f_{-3 \mathrm{~dB}}$	Frequency Response	$-3 \mathrm{~dB} @ 905 \mathrm{~nm}$	---	100	---	MHz
I	Sensitivity*	$\lambda=905 \mathrm{~nm} ; \mathrm{M}=100$	---	1160	---	KV / W
I_{cc}	Supply Current	Dark state	---	25	26	mA

[^0]These devices are sensitive to electrostatic discharge. Please use ESD precautions when handling.

Avalanche photodiode data @ $23^{\circ} \mathrm{C}$

Symbol	Characteristic	Test-Condition	Min	Typ	Max	Unit
ID	Dark Current	$\mathrm{M}=100$ (see note 1)	---	0.5	5.0	nA
C	Capacitance	$\mathrm{M}=100$ (see note 1)	---	1.2	---	pF
$V_{B R}$	Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=2 \mu \mathrm{~A}$	160	200	---	V
	Temperature Coefficient of $\mathrm{V}_{\text {BR }}$		---	1.55	---	V/K
	Responsivity	$\mathrm{M}=100 ;=0 \mathrm{~V} ; \lambda=905 \mathrm{~nm}$	55	60	---	A/W
$\Delta f_{3 \mathrm{~dB}}$	Bandwidth	-3dB	---	0.5	---	GHz
t_{r}	Rise Time	$\mathrm{M}=100$	---	550	---	ps
	Optimum Gain		50	60	---	
	"Excess Noise" factor	$M=100$	---	2.5	---	
	"Excess Noise" index	$\mathrm{M}=100$	---	0.2	---	
	Noise Current	$\mathrm{M}=100$	---	1.0	---	$\mathrm{pA} / \mathrm{Hz}^{1 / 2}$
	Max Gain		200	---	---	
NEP	Noise Equivalent Power	$M=100 ; \lambda=905 \mathrm{~nm}$	---	2.0×10^{-14}	---	$\mathrm{W} / \mathrm{Hz}^{1 / 2}$

Note 1: Measurement conditions: Setup of photo current 1 nA at $\mathrm{M}=1$ and irradiated by a $880 \mathrm{~nm}, 80 \mathrm{~nm}$ bandwidth LED.
Increase the photo current up to $100 \mathrm{nA},(\mathrm{M}=100)$ by internal multiplication due to an increasing bias voltage.
Transimpedance amplifier data @ $25^{\circ} \mathrm{C}$
$\left(\mathrm{Vcc}=+4.5 \mathrm{~V}\right.$ to $+11 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 50 \Omega$ load between OUT+ and OUT-. Typical values are at $\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=+5 \mathrm{~V}$)

Parameter	Test-Condition	Min	Typ	Max	Unit
Supply Voltage		+4.5	+5	+11	V
Supply Current		---	25	26	mA
Transimpedance	Differential, measured with $40 \mu \mathrm{~A}$ p-p signal	16	20	24	K Ω
Output impedance	Single ended per side	40	50	60	Ω
Maximum Differential Output Voltage	Input = 2 mA p -p with 50Ω differential termination	---	600	---	mV p-p
Input Referred RMS Noise	TO-5 package, see note 3	---	26.5	---	nA
Input Referred Noise Density	See note 3	---	3.0	---	$\mathrm{pA} / \mathrm{Hz}^{1 / 2}$
Small signal bandwidth	Source capacitance $=1.2 \mathrm{pF}$, see note 2	180	240	---	MHz
Low Frequency Cutoff	-3 dB, input < $20 \mu \mathrm{~A}$ DC	---	5	---	KHz
Transimpedance Linear Range	Peak to peak 0.95 < linearity < 1.05	± 25	± 30	---	$\mu \mathrm{A} p-\mathrm{p}$
Power Supply Rejection Ratio (PSRR)		---	40	---	dB

Note 2: Source capacitance for AD500-9-8015-TO52 is the capacitance of APD.
Note 3: Input referred noise is calculated as RMS output noise/ (gain at $f=100 \mathrm{Mhz}$). Noise density is (input referred noise)/Vbandwidth.

TRANSFER CHARACTERISTICS

The circuit used is an avalanche photodiode directly coupled to a high speed data handling transimpedance amplifier. The output of the APD (light generated current) is applied to the input of the amplifier. The amplifier output is in the form of a differential voltage pulsed signal.

The APD responsivity curve is provided in Fig. 2. The term Amps/Watt involves the area of the APD and can be expressed as Amps $/ \mathrm{mm}^{2} / \mathrm{Watts} / \mathrm{mm}^{2}$, where the numerator applies to the current generated divided by the area of the detector, the denominator refers to the power of the radiant energy present per unit area. As an example assume a radiant input of 1 microwatt at 850 nm . The APD's corresponding responsivity is $0.4 \mathrm{~A} / \mathrm{W}$.

If energy in $=1 \mu \mathrm{~W}$, then the current from the $\mathrm{APD}=(0.4 \mathrm{~A} / \mathrm{W}) \times\left(1 \times 10^{-6} \mathrm{~W}\right)=0.4 \mu \mathrm{~A}$. We can then factor in the typical gain of the APD of 100 , making the input current to the amplifier $40 \mu \mathrm{~A}$.

APPLICATION NOTES

The AD500-9-8015-TO52 is a high speed optical data receiver. It incorporates an internal transimpedance amplifier with an avalanche photodiode.
This detector requires +4.5 V to +11 V voltage supply for the amplifier and a high voltage supply ($100-240 \mathrm{~V}$) for the APD. The internal APD follows the gain curve published for the AD500-9-TO52-S1 avalanche photodiode. The transimpedance amplifier provides differential output signals in the range of 200 millivolts differential.

In order to achieve highest gain, the avalanche photodiode needs a positive bias voltage (Fig. 1). However, a current limiting resistor must be placed in series with the photodiode bias voltage to limit the current into the transimpedance amplifier. Failure to limit this current may result in permanent failure of the device. The suggested initial value for this limiting resistor is 390 KOhm.

When using this receiver, good high frequency placement and routing techniques should be followed in order to achieve maximum frequency response. This includes the use of bypass capacitors, short leads and careful attention to impedance matching. The large gain bandwidth values of this device also demand that good shielding practices be used to avoid parasitic oscillations and reduce output noise.

Fig. 1: APD gain vs bias voltage

Fig. 2: APD Spectral response ($\mathrm{M}=1$)

Fig. 3: Amplifier bandwith vs temperature

Fig.4: APD Capacitance vs voltage

Fig. 5: Differential gain vs. supply

Fig. 6: Amplifier gain vs. frequency

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Photodiodes category:
Click to view products by First Sensor manufacturer:

Other Similar products are found below :
LTR-526AD OED-SP-7L LTR-536AB LTR-743DBM1-TA 67-21SYGC-S349-TR8 SFH 2200 A01 HFD3081-108-XBA BPW 34 S E9601 SFH 2713 SFH 2703 LTR-546AD BPV23FL BPW 34 FAS BPW 34 FS IG17X1000S4I IG22X250S4I VTD205H VTD205KH VTP1220FBH VTP1232FH VTP4085H SFH 2400 OP913WSL OPF794 PD70-01C/TR7 LTR-536AD VTP8651H VTD206KH VTB1013H BPV23NF OP905 LTR-516AD BPW 34 FS-Z VTD34FH QSB34CGR SFH 2500 FA SFH 213 FA PD15-22C/TR8 VEMD5510C SFH $\underline{2200}$ VEMD5510CF APS5130PD7C-P22 SAH230M SAH230M2 SAH500M2 BP 104 FS BPV22F-AS12 BPW 21 BPW 34 SR-Z BPX 65

[^0]: * Sensitivity = APD responsivity (0.58 A/W X 100 gain) x TIA gain (20 K)

