RUN mXTENDTM (FR01-S4-224) – AN for WiFi Dual-band 2.4-2.5 GHz and 4.9-5.875 GHz

Fractus Antennas specializes in enabling effective mobile communications. Using Fractus Antennas technology, we design and manufacture optimized antennas to make your wireless devices more competitive. Our mission is to help our clients develop innovative products and accelerate their time to market through our expertise in antenna design, testing and manufacturing.

RUN mXTEND[™] Antenna Booster

FR01-S4-224

Fractus Antennas products are protected by <u>Fractus Antennas patents</u>.

All information contained within this document is property of Fractus Antennas and is subject to change without prior notice. Information is provided "as is" and without warranties. It is prohibited to copy or reproduce this information without prior approval.

Fractus Antennas is an ISO 9001:2015 certified company. All our antennas are lead-free and RoHS compliant.

ISO 9001: 2015 Certified

TABLE OF CONTENTS

1.	PRC	DDUCT DESCRIPTION FR01-S4-224	3
2.	EVA	LUATION BOARD WIFI DUAL-BAND	4
	2.1.	QUICK REFERENCE GUIDE	4
	2.2.	EVALUATION BOARD	4
	2.3.	MATCHING NETWORK	5
	2.4.	VSWR AND TOTAL EFFICIENCY	5
	2.5.	RADIATION PATTERNS (2.4-2.5 GHz), GAIN, AND EFFICIENCY	6
	2.6.	RADIATION PATTERNS (4.9-5.875 GHz), GAIN, AND EFFICIENCY	7
3.	EVA	LUATION BOARD CR80 WIFI DUAL-BAND	8
	3.1.	QUICK REFERENCE GUIDE	8
	3.2.	EVALUATION BOARD	8
	3.3.	MATCHING NETWORK	9
	3.4.	VSWR AND TOTAL EFFICIENCY	9
	3.5.	RADIATION PATTERNS (2.4-2.5 GHz), GAIN, AND EFFICIENCY	10
	3.6.	RADIATION PATTERNS (4.9-5.875 GHz), GAIN, AND EFFICIENCY	11

1. PRODUCT DESCRIPTION FR01-S4-224

The RUN mXTEND[™] Antenna Booster has been specifically designed for providing multiband performance in wireless devices (in particular in mobile devices), enabling worldwide coverage by allowing operation in the communication standards such as WiFi Dual-band.

Material: The RUN mXTEND[™] Antenna Booster is built on glass epoxy substrate.

APPLICATIONS

- Handsets and Smartphones
- Tablets and PCs
- Modules
- Routers
- Home automotion

BENEFITS

- High efficiency
- Small size
- Cost-effective
- Easy-to-use (pick and place)
- Multiband behaviour (worldwide standards)
- Off-the-Shelf Standard Product (no customization is required)

The RUN mXTEND[™] Antenna Booster belongs to a new generation of antenna solutions based on the Virtual Antenna[™] technology owned by Fractus Antennas. The technology is mainly focused on replacing conventional antenna solutions by miniature and standard components.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N^o 674491

2. EVALUATION BOARD WIFI DUAL-BAND

2.1. QUICK REFERENCE GUIDE

Technical features	2.4 – 2.5 GHz	4.9 – 5.875 GHz
Average Efficiency	> 70 %	> 70 %
Peak Gain	2.9 dBi	3.1 dBi
VSWR	< 2	.5:1
Radiation Pattern	Omnidir	rectional
Polarization	Linear	
Weight (approx.)	0.19 g.	
Temperature	-40 to + 85 °C	
Impedance	50 Ω	
Dimensions (L x W x H)	12.0 mm x 3.0 mm x 2.4 mm	

Table 1 – Technical Features. Measures from the Evaluation Board. See Figure 1.

2.2. EVALUATION BOARD

This Evaluation Board EB_FR01-S4-224-2,4-5 is made with a coplanar grounded transmission line (trace on the PCB) to connect the RUN mXTENDTM Antenna Booster with the SMA connector. The RUN mXTENDTM provides operation in the frequency regions, from 2.4 GHz to 2.5 GHz and from 4.9 GHz to 5.875 GHz, through a single input/output port.

Measure	mm
Α	126.5
В	120
С	60
D	2.5

Tolerance: ±0.2 mm

D: Distance between the RUN mXTEND^{TM} Antenna Booster and the ground plane.

Material: The evaluation board is built on FR4 substrate. Thickness is 1 mm.

Figure 1 – EB_FR01-S4-224-2,4-5. Evaluation Board providing operation from 2.4 GHz to 2.5 GHz and from 4.9 GHz to 5.875 GHz.

This product and its use are protected by at least one or more of the following <u>patents</u> PAT. US 9,130,259 B2; PAT. US 8,237,615 B2. Other domestic and international patents pending. Additional information about patents related to this product is available at <u>www.fractusantennas.com/virtual-antenna/</u>.

2.3. MATCHING NETWORK

The specs of a Fractus Antennas standard product are measured in their evaluation board, which is an ideal case. In a real design, components nearby the antenna, LCD's, batteries, covers, connectors, etc. affect the antenna performance. This is the reason why it is highly recommended placing pads compatible with 0402 and 0603 SMD components for a matching network as close as possible to the feeding point. Do it in the ground plane area, not in the clearance area. This provides a degree of freedom to tune the RUN mXTEND[™] Antenna Booster once the design is finished and taking into account all elements of the system (batteries, displays, covers, etc.).

Please notice that different devices with different ground planes and different components nearby the RUN mXTENDTM Antenna Booster may need a different matching network. To ensure optimal results, the use of high Q and tight tolerance components is highly recommended (Murata components). Please, if you need assistance contact info@fractusantennas.com for more information related to the antenna booster matching service.

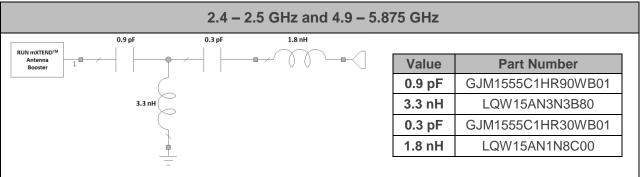
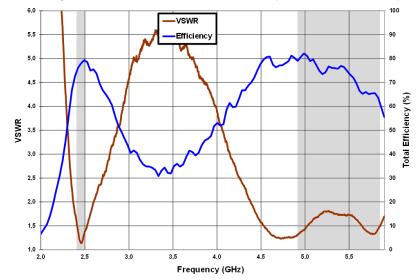



Figure 2 – Matching Network implemented in the evaluation board (Figure 1).

2.4. VSWR AND TOTAL EFFICIENCY

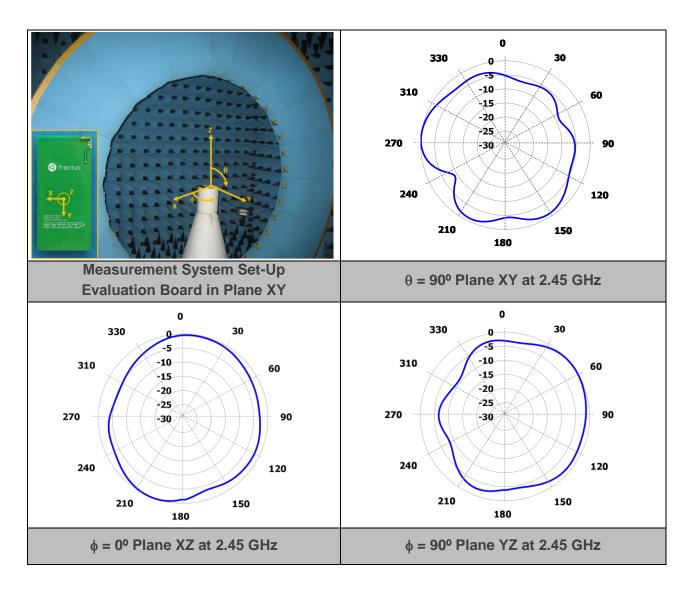
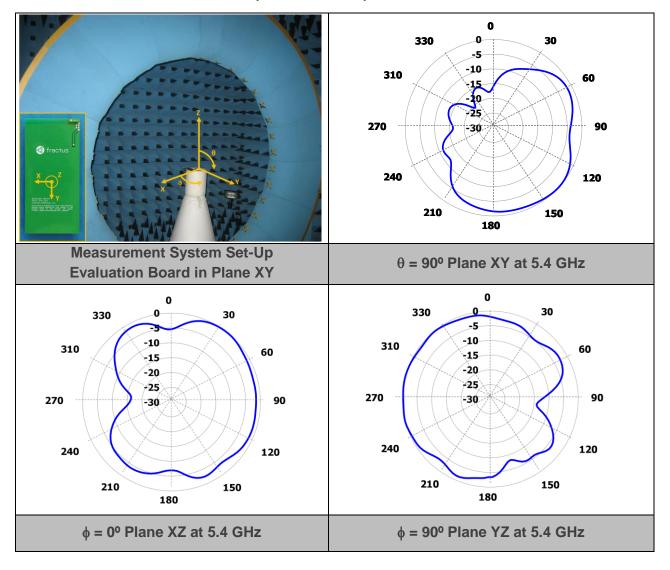

VSWR (Voltage Standing Wave Ratio) and Total Efficiency versus Frequency (GHz).

Figure 3 – VSWR and Total Efficiency for the 2.4 – 2.5 GHz frequency range and for the 4.9 – 5.875 GHz frequency range from the evaluation board (Figure 1).


2.5. RADIATION PATTERNS (2.4-2.5 GHz), GAIN, AND EFFICIENCY

	Peak Gain	2.9 dBi
Gain	Average Gain across the band	2.7 dBi
	Gain Range across the band (min, max)	2.3 <-> 2.9 dBi
Efficiency	Peak Efficiency	78.9 %
	Average Efficiency across the band	75.7 %
	Efficiency Range across the band (min, max)	72.8 – 78.7 %

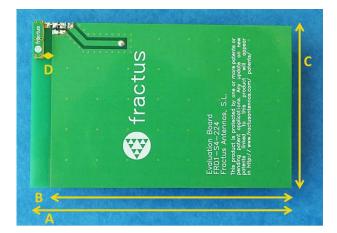
Table 2 – Antenna Gain and Total Efficiency from the evaluation board (Figure 1) within the 2.4 – 2.5 GHz frequency range. Measures made in the Satimo STARGATE 32 anechoic chamber.

2.6. RADIATION PATTERNS (4.9-5.875 GHz), GAIN, AND EFFICIENCY

	Peak Gain	3.1 dBi
Gain	Average Gain across the band	2.8 dBi
	Gain Range across the band (min, max)	1.8 <-> 3.1 dBi
Efficiency	Peak Efficiency	83.1 %
	Average Efficiency across the band	72.8 %
	Efficiency Range across the band (min, max)	58.7 – 83.1 %

Table 3 – Antenna Gain and Total Efficiency from the evaluation board (Figure 1) within the 4.9-5.875 GHz frequency range. Measures made in the Satimo STARGATE 32 anechoic chamber.

3. EVALUATION BOARD CR80 WIFI DUAL-BAND


3.1. QUICK REFERENCE GUIDE

Technical features	2.4 – 2.5 GHz	4.9 – 5.875 GHz
Average Efficiency	> 75 %	> 65 %
Peak Gain	2.3 dBi	2.8 dBi
VSWR	< 2:1	
Radiation Pattern	Omnidirectional	
Polarization	Linear	
Weight (approx.)	0.19 g.	
Temperature	-40 to + 85 °C	
Impedance	50 Ω	
Dimensions (L x W x H)	12.0 mm x 3.0 mm x 2.4 mm	

 Table 4 – Technical Features. Measures from the Evaluation Board. See Figure 4.

3.2. EVALUATION BOARD

This Evaluation Board EB_FR01-S4-224-CR80-2,4-5 is made with a coplanar grounded transmission line (trace on a PCB) to connect the RUN mXTENDTM Antenna Booster with the SMA connector. The RUN mXTENDTM provides operation in the frequency regions, from 2.4 GHz to 2.5 GHz and from 4.9 GHz to 5.875 GHz, through a single input/output port.

Measure	mm
Α	86
В	79.5
С	54
D	2.5

Tolerance: ±0.2 mm

 ${\bf D}:$ Distance between the RUN mXTEND^{\rm TM} Antenna Booster and the ground plane.

Material: The evaluation board is built on FR4 substrate. Thickness is 1 mm.

Figure 4 – EB_FR01-S4-224-CR80-2,4-5 in CR80 standard format. Evaluation Board providing operation from 2.4 GHz to 2.5 GHz and from 4.9 GHz to 5.875 GHz.

This product and its use are protected by at least one or more of the following <u>patents</u> PAT. US 9,130,259 B2; PAT. US 8,237,615 B2. Other domestic and international patents pending. Additional information about patents related to this product is available at www.fractusantennas.com/virtual-antenna/.

3.3. MATCHING NETWORK

The specs of a Fractus Antennas standard product are measured in their evaluation board, which is an ideal case. In a real design, components nearby the antenna, LCD's, batteries, covers, connectors, etc. affect the antenna performance. This is the reason why it is highly recommended placing pads compatible with 0402 and 0603 SMD components for a matching network as close as possible to the feeding point. Do it in the ground plane area, not in the clearance area. This provides a degree of freedom to tune the RUN mXTEND[™] Antenna Booster once the design is finished and taking into account all elements of the system (batteries, displays, covers, etc.).

Please notice that different devices with different ground planes and different components nearby the RUN mXTENDTM Antenna Booster may need a different matching network. To ensure optimal results, the use of high Q and tight tolerance components is highly recommended (Murata components). Please, if you need assistance contact info@fractusantennas.com for more information related to the antenna booster matching service.

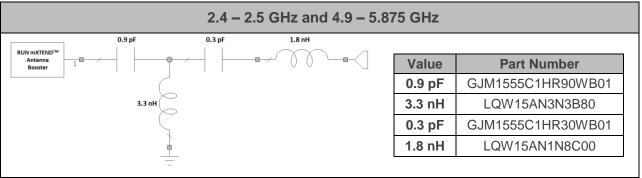
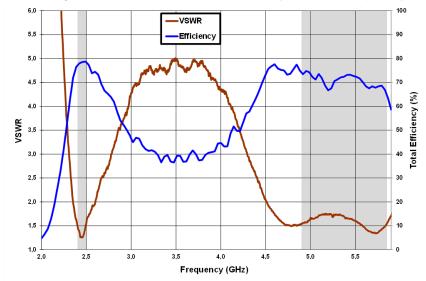



Figure 5 – Matching Network implemented in the evaluation board (Figure 4).

3.4. VSWR AND TOTAL EFFICIENCY

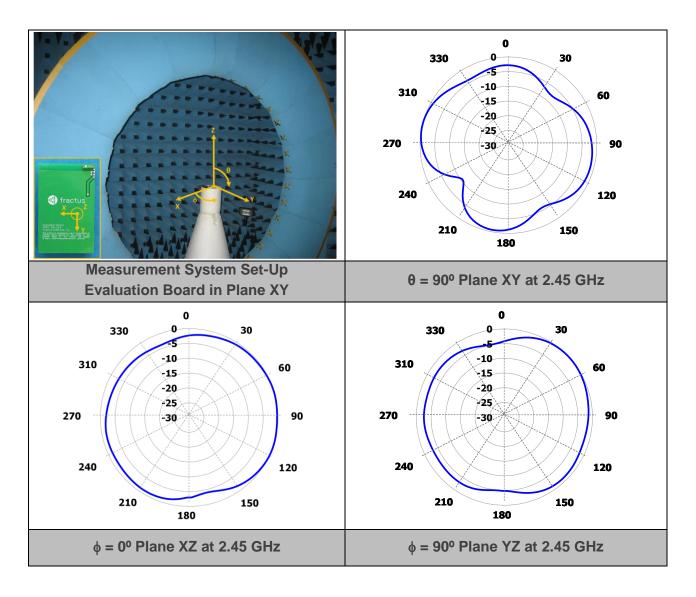

VSWR (Voltage Standing Wave Ratio) and Total Efficiency versus Frequency (GHz).

Figure 6 – VSWR and Total Efficiency for the 2.4 – 2.5 GHz frequency range and for the 4.9 – 5.875 GHz frequency range from the evaluation board (Figure 4).

3.5. RADIATION PATTERNS (2.4-2.5 GHz), GAIN, AND EFFICIENCY

	Peak Gain	2.3 dBi
Gain	Average Gain across the band	2.1 dBi
	Gain Range across the band (min, max)	1.9 <-> 2.3 dBi
	Peak Efficiency	78.7 %
Efficiency	Average Efficiency across the band	78.3 %
	Efficiency Range across the band (min, max)	77.1 – 78.7 %

Table 5 – Antenna Gain and Total Efficiency from the Evaluation Board (Figure 4) within the 2.4 – 2.5 GHz frequency range. Measures made in the Satimo STARGATE 32 anechoic chamber.

0 30 330 0 -5 310 -10 60 15 -20 -25 270 90 -30 240 120 210 150 180 **Measurement System Set-Up** θ = 90° Plane XY at 5.4 GHz **Evaluation Board in Plane XY** 0 0 30 330 30 330 0 0 -5 310 -10 310 -10 60 60 -15 -15 -20 -20 -25 -25 270 90 270 90 -30 -30 240 240 120 120 210 150 210 150 180 180 $\phi = 0^{\circ}$ Plane XZ at 5.4 GHz ϕ = 90° Plane YZ at 5.4 GHz

3.6. RADIATION PATTERNS (4.9-5.875 GHz), GAIN, AND EFFICIENCY

	Peak Gain	2.8 dBi
Gain	Average Gain across the band	2.4 dBi
	Gain Range across the band (min, max)	1.6 <-> 2.8 dBi
	Peak Efficiency	74.8 %
Efficiency	Average Efficiency across the band	70.5 %
	Efficiency Range across the band (min, max)	62.0 – 74.8 %

Table 6 – Antenna Gain and Total Efficiency from the evaluation board (**Figure** 4) within the 4.9 – 5.875 GHz frequency range. Measures made in the Satimo STARGATE 32 anechoic chamber.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Antenna Development Tools category:

Click to view products by fractus antennas manufacturer:

Other Similar products are found below :

0868AT43A0020-EB1SMA EVALBGSA141MN10TOBO1 A10393-U1 B5771-U1 A10192-U1 AEK-LTE-CER IOT-K SR4W035-EVB-1 W3095-K W3070-K W3011A-K W3008C-K LORA-K ISM-K A10472-U1 REFLECTOR-EVB-1 A10340-U1 A10194-U1 A10204-U1 A5645H-EVB-1 A5645-U1 A5839-U1 A5887H-EVB-1 A6111-U1 M20047-EVB-1 SR42W001-U1 SR42W009-U1 SR4G008-U1 SR4G053-EVB-1 SR4I052-EVB-1 SR4L034-EVB-1 SR4L049-EVB-1 SRC5G027-U1 SRCW004-U1 1001312-01 M310220-01 M620720-01 M830120-01 M830520-01 P822601-01 P822602-01 EB_FR01-S4-224-CR80-2,4-5 EB_FR01-S4-224-2,4-5 EB_FR01-S4-224-CR80-868-915 EB_FR01-S4-224-CR80-2400 EB_FR01-S4-224-2400 EB_FR01-S4-224-1B-2R-1P EB_FR01-S4-232-UFL2R-1P EB_FR01-S4-232-1B-2R-1P