ignion^N

GeofindTM (NN01-103) — GPS/GLONASS/ BeiDou (1561 MHz, 1575 MHz and 1598-1606 MHz)

USER MANUAL Geofind[™] (NN01-103)

Geofind[™] (NN01-103) – **GPS/GLONASS/BeiDou** (1561 MHz, 1575 MHz and 1598-1606 MHz)

Ignion specializes in enabling effective mobile communications. Using Ignion technology, we design and manufacture optimized antennas to make your wireless devices more competitive. Our mission is to help our clients develop innovative products and accelerate their time to market through our expertise in antenna design, testing and manufacturing.

GeofindTM

NN01-103

Ignion products are protected by <u>Ignion</u> patents.

All information contained within this document is property of Ignion and is subject to change without prior notice. Information is provided "as is" and without warranties. It is prohibited to copy or reproduce this information without prior approval.

Ignion is an ISO 9001:2015 certified company. All our antennas are lead-free and RoHS compliant.

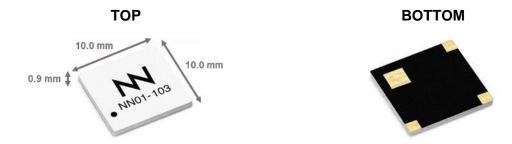
ISO 9001:2015 Certified

Last Update: January 2021 2

INDEX OF CHAPTERS

1.	ANTENNA DESCRIPTION	5
2.	QUICK REFERENCE GUIDE	5
3.	ELECTRICAL PERFORMANCE	6
4.	MECHANICAL CHARACTERISTICS	10
5.	ASSEMBLY PROCESS	11
6.	PACKAGING 14	
7.	PRODUCT CHANGE NOTIFICATION	15

TABLE OF CONTENTS


1.	. AN	TENNA DESCRIPTION	5
2.	. QU	ICK REFERENCE GUIDE	5
3.	EL	ECTRICAL PERFORMANCE	6
	3.1.	EVALUATION BOARD	6
	3.2.	MATCHING NETWORK	6
	3.3.	VSWR AND EFFICIENCY	7
	3.4.	RADIATION PATTERNS, GAIN AND EFFICIENCY	8
	3.5.	CAPABILITIES AND MEASUREMENT SYSTEMS	9
4.	. ME	CHANICAL CHARACTERISTICS	10
	4.1.	DIMENSIONS AND TOLERANCES	10
	4.2.	SPECIFICATIONS FOR THE INK	10
	4.3.	ANTENNA FOOTPRINT	11
5.	AS	SEMBLY PROCESS	11
6.	. PA	CKAGING	14
7.	. PR	ODUCT CHANGE NOTIFICATION	15

1. ANTENNA DESCRIPTION

The Geofind[™] chip antenna is specifically engineered for low cost, consumer electronics mobile devices for GPS (1575 MHz), GLONASS (1598-1606 MHz), and BeiDou (1561 MHz).

The Geofind[™] chip antenna uses space-filling properties of Ignion technology to minimise its size and cost while maintaining a high radiation efficiency value. This monopole antenna performs an omnidirectional radiation pattern, allowing it to work effectively regardless of the position of the GPS/GLONASS/BeiDou device.

Material: The Geofind[™] antenna is built on glass epoxy substrate.

APPLICATIONS

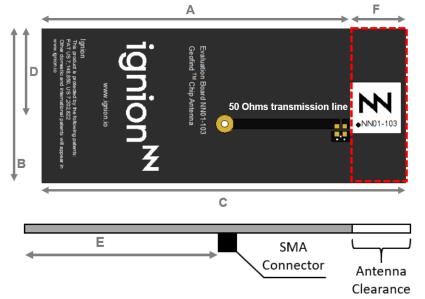
- Metering (Gas, Electricity, Water...)
- RFID (UHF Tags, Readers...)
- Sensors (Parking, Speed control, Optics...)
- Modules Zigbee
- Gateways

BENEFITS

- High efficiency and gain
- Cost-effective
- Small size
- Easy to use (pick and place)

2. QUICK REFERENCE GUIDE

Technical Features	1561 MHz	1575 MHz	1598 – 1606 MHz
Antenna Efficiency	> 75.0 %	> 70.0 %	> 70.0 %
Peak Gain	1.4 dBi	1.2 dBi	1.3 dBi
VSWR	< 2:1		
Radiation Pattern	Omnidirectional		
Polarization	Linear		
Weight (approx.)	0.2 g		
Temperature	-40 to +125° C		
Impedance	50 Ω		
Dimensions (L x W x	10.0 mm x 10.0 mm x 0.9 mm		
H)			


Table 1 – Technical Features. Measures from the evaluation board. See Figure 1 and picture in page 8.

Please contact support@ignion.io if you require additional information on antenna integration or optimization on your PCB.

3. ELECTRICAL PERFORMANCE

3.1. EVALUATION BOARD

The Ignion configuration used in testing the Geofind™ Embedded Antenna is displayed in Figure 1

Measure	mm
Α	60.0
В	30.0
С	71.0
D	17.0
E	35.0
F	11.0

Tolerance: ±0.2mm

Material: The evaluation board is built on FR4 substrate. Thickness is 1.0mm.

Clearance Area: 30 mm x 11 mm (BxF)

Figure 1 – EB_NN01-103. Geofind[™] Evaluation Board.

3.2. MATCHING NETWORK

The specs of a Ignion standard antenna are measured in their evaluation board, which is an ideal case. In a real design, components nearby the antenna, LCD's, batteries, covers, connectors, etc. affect the antenna performance. This is the reason why it is highly recommended placing pads compatible with 0402 and 0603 SMD components for a PI matching network as close as possible to the antenna feeding point. Do it in the ground plane area, not in the clearance area. This is a degree of freedom to tune the antenna once the design is finished and considering all elements of the system (batteries, displays, covers, etc.).

Please notice that different devices with different ground planes and different components nearby the Geofind™ chip antenna may need a different matching network. To ensure optimal results, the use of high Q and tight tolerance components is highly recommended (Murata components). If you need assistance to design your matching network beyond this application note, please contact support@ignion.io, or try our free-of-charge¹ NN Wireless Fast-Track design service, you will get your chip antenna design including a custom matching network for your device in 24h¹. Other related to NN's range of R&D services is available at: https://www.ignion.io/rdservices/

¹ See terms and conditions for a free NN Wireless Fast-Track service in 24h at: https://www.ignion.io/fast-track-project/

7

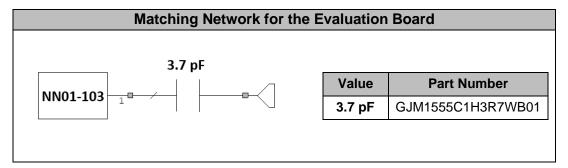


Figure 2 – Matching network implemented in the evaluation board (Figure 1).

3.3. VSWR AND EFFICIENCY

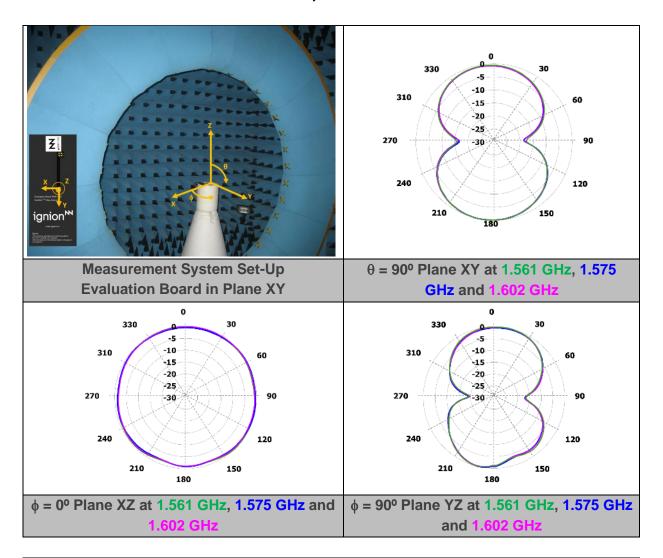
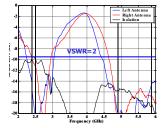

VSWR (Voltage Standing Wave Ratio) and Total Efficiency versus Frequency (GHz).

Figure 3 – VSWR and Efficiency (%) vs. Frequency (GHz).

3.4. RADIATION PATTERNS, GAIN AND EFFICIENCY

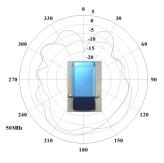
BeiDou	Gain		1.4 dBi
BeiDou	Efficiency		78.0 %
GPS	Gain		1.2 dBi
GF3	Efficiency		73.3 %
		Peak Gain	1.3 dBi
	Gain	Average Gain across the band	1.2 dBi
OL ONAGO		Gain Range across the band (min, max)	1.2 <-> 1.3 dBi
GLONASS		Peak Efficiency	73.7 %
	Efficiency	Average Efficiency across the band	73.1 %
		Efficiency Range across the band (min, max)	72.6 – 73.7 %

Table 2 – Antenna Gain and Total Efficiency from the evaluation board (Figure 1) for BeiDou (1561 MHz), GPS (1575 MHz) and GLONASS (1598-1606 MHz) bands. Measures made in the Satimo STARGATE 32 anechoic chamber.


3.5. CAPABILITIES AND MEASUREMENT SYSTEMS

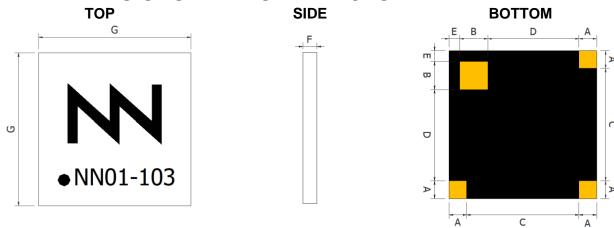
Ignion specializes in the design and manufacture of optimized antennas for wireless applications, and with the provision of RF expertise to a wide range of clients. We offer turn-key antenna products and antenna integration support to minimize your time requirements and maximize return on investment throughout the product development process. We also provide our clients with the opportunity to leverage our in-house testing and measurement facilities to obtain accurate results quickly and efficiently.

Agilent E5071B


VSWR & S Parameters

SATIMO STARGATE 32

Radiation
Pattern
&
Efficiency



Anechoic chambers and full equipped in-house lab

4. MECHANICAL CHARACTERISTICS

4.1. DIMENSIONS AND TOLERANCES

The black dot located on the top side of the antenna indicates the feed pad.

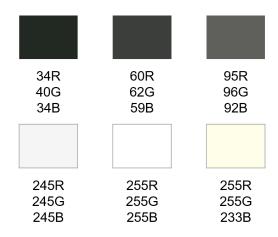
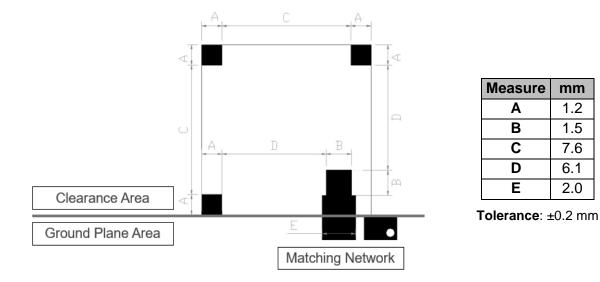

Measure	mm	Measure	mm
Α	1.2 ± 0.1	E	0.71 ± 0.15
В	1.9 ± 0.1	F	0.9 ± 0.2
С	7.6 ± 0.2	G	10.0 ± 0.2
D	6.2 ± 0.2		

Figure 4 - Antenna Dimensions and Tolerances.

The GeofindTM chip antenna is compliant with the restriction of the use of hazardous substances (**RoHS**). The RoHS certificate can be downloaded from <u>www.ignion.io</u>.

4.2. SPECIFICATIONS FOR THE INK

Next figure shows the correct colors of the antenna:



Acceptable color range

4.3. ANTENNA FOOTPRINT

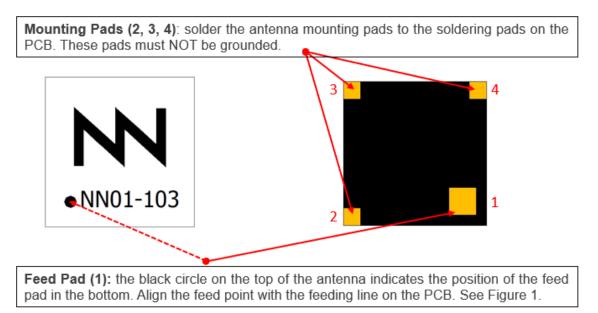
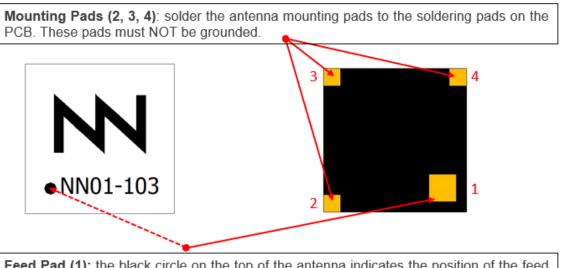

This antenna footprint applies for the reference evaluation board described on page 6 of this User Manual.

Figure 5 – Antenna Footprint Details.


Other PCB form factors and configurations may require a different feeding configuration, feeding line dimensions and clearance areas. If you require support for the integration of the antenna in your design, please contact support@ignion.io.

5. ASSEMBLY PROCESS

Figure 2 shows the back and front view of the GeofindTM chip antenna, and indicates the location of the feeding point and the mounting pads:

Feed Pad (1): the black circle on the top of the antenna indicates the position of the feed pad in the bottom. Align the feed point with the feeding line on the PCB. See Figure 1.

Figure 2 – Pads of the Geofind[™] chip antenna.

As a surface mount device (SMD), this antenna is compatible with industry standard soldering processes. The basic assembly procedure for this antenna is as follows:

- 1. Apply a solder paste to the pads of the PCB. Place the antenna on the board.
- 2. Perform a reflow process according to the temperature profile detailed in Figure 4 on page 13.
- After soldering the antenna to the circuit board, perform a cleaning process to remove any
 residual flux. Ignion recommends conducting a visual inspection after the cleaning process
 to verify that all reflux has been removed.

The drawing below shows the soldering details obtained after a correct assembly process:

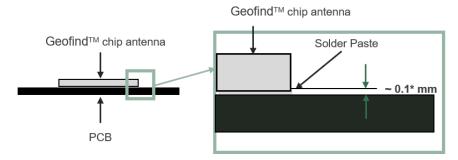


Figure 3 - Soldering Details.

<u>NOTE(*)</u>: Solder paste thickness after the assembly process will depend on the thickness of the soldering stencil mask. A stencil thickness equal to or larger than **127 microns (5 mils)** is required.

The Geofind[™] chip antenna should be assembled following either Sn-Pb or Pb-free assembly processes. According to the Standard **IPC/JEDEC J-STD-020C**, the temperature profile suggested is as follows:

Phase	Profile features	Pb-Free Assembly (SnAgCu)
RAMP-UP	Avg. Ramp-up Rate (Tsmax to Tp)	3 °C / second (max.)
PREHEAT	Temperature Min (Tsmin)Temperature Max (Tsmax)Time (tsmin to tsmax)	150 °C 200 °C 60-180 seconds
REFLOW	- Temperature (TL) - Total Time above TL (tL)	217 °C 60-150 seconds
PEAK	- Temperature (Tp) - Time (tp)	260 °C 20-40 seconds
RAMP-DOWN	Rate	6 °C/second max
Time from 25 °C to Peak Temperature		8 minutes max

Table 3 – Recommended soldering temperatures.

Next graphic shows temperature profile (grey zone) for the antenna assembly process in reflow ovens.

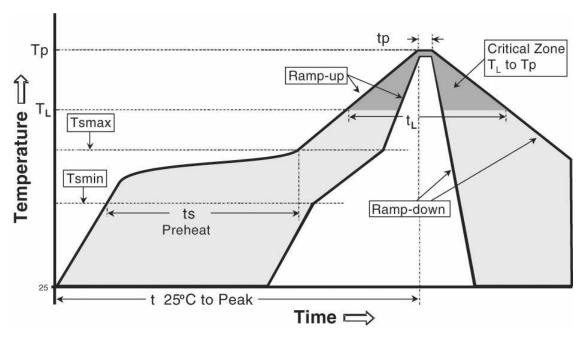
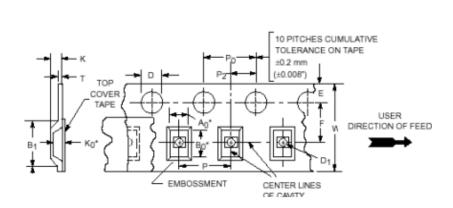



Figure 4 – Temperature profile.

6. PACKAGING

The Geofind™ chip antenna is available in tape and reel packaging.

Measure	mm
W	16.0 ± 0.3
A0	10.5 ± 0.1
В0	10.5 ± 0.1
K0	1.5 ± 0.1
B1	11.1 ± 0.1
D	2.0 ± 0.1
D1	2.0 ± 0.1
Wmax	16.3
E	1.7 ± 0.1
F	7.5 ± 0.1
K	1.8 ± 0.1
P	12.0 ± 0.1
P0	4.0 ± 0.1
P2	2.0 ± 0.1

Figure 5 – Tape Dimensions and Tolerances.

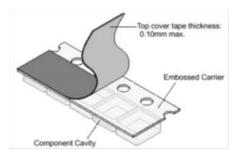
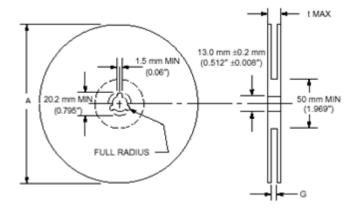



Figure 6 – Images of the tape.

Measure	mm
A max	330.0 ± 1.0
G	17.5 ± 0.2
t max	21.5 ± 0.2

Reel Capacity: 2500 antennas

Figure 7 - Reel Dimensions and Capacity.

7. PRODUCT CHANGE NOTIFICATION

This document is property of Ignion, Not to disclose or copy without prior written consent

PCN	Number: I	NN19	100005
-----	-----------	------	--------

Notification Date: October 07th, 2019

Part Number identification:

Part Number changes, it will be applied in all the document of the company (User Manual, Data Sheet, ...)

Previous Part
Number
FR05-S1-E-0-103

New Part Number
NN01-103

Reason for change:

	Specs (electrical/mechanical)		Manufacturing location	
	User Manual/Data Sheet		Quality/Reliability	
	Material/Composition		Logistics	
	Processing/Manufacturing	Χ	Other: Logo, product color and Part	
			Number	

Change description

- 1.- Part Number: From FR05-S1-E-0-103 FRACTUS to NN01-103 Ignion in the User Manual
- 2.- Logo: From FRACTUS logo to Ignion logo

OLD

Comments:

- 1.- Electrical and Mechanical specs remain the same
- 2.- Footprint in the PCB to solder the chip antenna remains the same

Identification method

1.- In the chip antennas, the changes are in the logo and in the part number

User Manual	Χ	Available from:
		May 2020
Samples	Х	Available from:
		June 2020

Ignion Contact:

Sales Supply Chain

Name: Josep Portabella Albert Vidal

Email: josep.portabella@ignion.io albert.vidal@ignion.io

Contact: support@ignion.io +34 935 660 710

Barcelona

Av. Alcalde Barnils, 64-68 Modul C, 3a pl. Sant Cugat del Vallés 08174 Barcelona Spain

Shanghai

Shanghai Bund Centre 18/F Bund Centre, 222 Yan'an Road East, Huangpu District Shanghai, 200002 China

New Dehli

New Delhi, Red Fort Capital Parsvnath Towers Bhai Veer Singh Marg, Gole Market, New Delhi, 110001 India

Tampa

8875 Hidden River Parkway Suite 300 Tampa, FL 33637 USA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Antenna Development Tools category:

Click to view products by Fractus Antennas manufacturer:

Other Similar products are found below:

0868AT43A0020-EB1SMA EVALBGSA141MN10TOBO1 A10393-U1 PCSD.06.A B5771-U1 KIT-LTE-GNSS-01 KIT-WIFI-ISM-01 A10472-U1 REFLECTOR-EVB-1 A10340-U1 ACAG0201-2450-EVB ACAG0301-15752450-EVB ACAG0301-1575-EVB ACAG0301-2450-EVB ACAG0301-2450-EVB ACAG1204-433-EVB ACAG1204-868-EVB ACAG1204-915-EVB ACAR0301-SW2-EVB ACAR3005-C2WB-EVB ACAR3005-S824-EVB ACAR3705-S698-EVB ACAR4008-S698-EVB A10137-D A10194-U1 A10204-U1 A5645H-EVB-1 A5645-U1 A5887H-EVB-1 A6111-U1 M20057-EVB-1 SR42W001-U1 SR42W009-U1 SR4G013-U1 SR4G053-EVB-1 SR4L034-EVB-3 SR4L049-EVB-1 SRC5G027-U1 SRCW004-U1 M310220-01 M830120-01 M830520-01 EB_N01-105A EB_N02-201-5G CCKLTE450-NA AEK-GNCP-TH258L15 MPA-104- KIT MIKROE-4063 MCA100-EVB