COMPACT POWER RELAY 1 POLE - 25/30A (For automotive applications)

FBR51, 52 Series

FEATURES

- Compact and light weight structure
- High current contact capacity
(carrying current: $35 \mathrm{~A} / 10$ minutes, $30 \mathrm{~A} / 1$ hour)
- High resistance to vibration and shock
- Improved heat resistance and extended operation range
- Two contact gap options
(FBR51: 0.3 mm , FBR52: 0.6 mm)

- Three types of contact material

Part Numbers

(a)	Relay type	$\begin{aligned} & \hline \text { FBR51 } \\ & \text { FBR52 } \end{aligned}$: FBR51-Series - Standard type (contact gap 0.3mm) : FBR52-Series - Wide contact gap type (contact gap 0.6 mm)
(b)	Enclosure	N	: Plastic sealed type
(c)	Coil rated voltage	D12	$: 6 \ldots . .12 \mathrm{VDC}$ Coil rating table at page 3
(d)	Contact material	W1 WL WF	: Silver-tin oxide indium (high power type, 1 form C) : Silver-tin oxide indium (lamp loads, 1 form A, FBR51 only) : Silver-tin oxide indium (flasher loads, 1 form A, FBR51 only)

Actual marking does not carry the type name: "FBR"
E.g.: Ordering code: "FBR51ND12-W1", actual marking: "51ND12-W1"

■ Specifications (for motor load)

Item			Characteristics W1 contact	Remarks / conditions
Contact data	Configuration		1 form C (SPDT)	
	Material		AgSnO2In (high capacity type)	
	Voltage drop		Max. 100mV	At 1A/12VDC
	Contact rating		25A, 14VDC	At locked motor load
	Max. carrying current		35A / 10 min., 30A 1hr	
	Max. inrush current		60A	Reference
	Max. switching voltage		16VDC	Reference
	Max. switching power		35A	Reference
	Min. switching load *1		1 A 6VDC	Reference
Coil	Storage temperature range		$40^{\circ} \mathrm{C} \sim+100^{\circ} \mathrm{C}$	No frost
	Operating temperature range		$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$ (At long continuous carry current conditions, refer to "operating coil voltage range" on page 7)	No frost
Timing data	Operate		Max. 10ms	At nominal voltage No diode, excluding bounce
	Release		Max. 5ms	At nominal voltage No diode, excluding bounce
Life	Mechanical	AC contact rating	Min. 10×10^{6} operations	
	Electrical (resistive)	DC contact rating	Min. 100×103 operations	At contact rating, locked motor load
Other	Vibration resistance	Misoperation	10 to 200 Hz , acceleration $44 \mathrm{~m} / \mathrm{s} 2(4.5 \mathrm{G})$ constant acceleration	Direction X, Y, Z, contact ON/OFF total 6 cycles
		Endurance	10 to 200 Hz , acceleration $44 \mathrm{~m} / \mathrm{s} 2(4.5 \mathrm{G})$ constant acceleration	Direction X, Y, Z, contact OFF total 6 hours
	Shock resistance	Misoperation	Min. $100 \mathrm{~m} / \mathrm{s}^{2}(11 \pm 1 \mathrm{~ms})$	Direction X, Y, Z, contact ON/OFF total 36 times
		Endurance	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}(6 \pm 1 \mathrm{~ms})$	Direction X, Y, Z, contact OFF total 18 times
	Dimensions / weight		$12.1 \times 15.5 \times 13.7 \mathrm{~mm} / \mathrm{approx} .6 \mathrm{~g}$	

[^0]
■ Specifications (for lamp load)

Item			Characteristics		Remarks / conditions
			W1 contact	WL Contact	
Contact data	Configuration		1 form C (SPDT)		
	Material		AgSn02In (for flasher)	AgSn02In (for lamp)	
	Voltage drop		Max. 100mV		At 2A/12VDC
	Contact rating		14VDC, 80W	14VDC, 120W	At lamp load
	Max. carrying current		35A / 10 min., 30A 1hr		At $25^{\circ} \mathrm{C}$ with nominal coil voltage
	Max. inrush current		60A		At lamp load, reference
	Max. switching voltage		16VDC		Reference
	Max. switching power		35A		Reference
	Min. switching load *1		1A 6VDC		Reference
Coil	Storage temperature range		$40^{\circ} \mathrm{C} \sim+100^{\circ} \mathrm{C}$		No frost
	Operating temperature range		$-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$ (At long continuous carry current conditions, refer to "operating coil voltage range" on page 7)		No frost
Timing data	Operate		Max. 10ms		At nominal voltage No diode, excluding bounce
	Release		Max. 5ms		At nominal voltage No diode, excluding bounce
Life	Mechanical	AC contact rating	Min. 10×10^{6} operations		
	Electrical (resistive)	DC contact rating	$\begin{gathered} \text { Min. } 2.5 \times 106 \\ \text { operations at } \\ \text { inrush } 11 \mathrm{~A} 14 \mathrm{VDC} \\ (0.35 \text { sec }-0 \mathrm{ON} / 0.35 \\ \text { sec - OFF) } \\ \hline \end{gathered}$	Min. 100×10^{3} operations	At contact rating, lamp load
Other	Vibration resistance	Misoperation	10 to 200 Hz , acceleration $44 \mathrm{~m} / \mathrm{s} 2(4.5 \mathrm{G})$ constant acceleration		Direction X, Y, Z, contact ON/ OFF total 6 cycles
		Endurance	10 to 200 Hz , acceleration $44 \mathrm{~m} / \mathrm{s} 2(4.5 \mathrm{G})$ constant acceleration		Direction X, Y, Z, contact OFF total 6 hours
	Shock resistance	Misoperation	Min. $100 \mathrm{~m} / \mathrm{s}^{2}(11 \pm 1 \mathrm{~ms})$		Direction X, Y, Z, contact ON/ OFF total 36 times
		Endurance	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}(6 \pm 1 \mathrm{~ms})$		Direction X, Y, Z, contact OFF total 18 times
	Dimensions / weight		$12.1 \times 15.5 \times 13.7$ mm / approx. 6 g		

[^1]■ Coil Data (FBR51 series)

Coil code	Rated Coil Voltage	Coil Resistance +/-10\%	Must Operate Voltage*	Must Release Voltage*
	(VDC)	(Ω)	(VDC)	(VDC)
D06	6	60	$\begin{gathered} 3.6 \\ 4.5\left(\text { at } 85^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 0.5 \\ 0.7\left(\text { at } 85^{\circ} \mathrm{C}\right) \end{gathered}$
D09	6	135	$\begin{gathered} 5.4 \\ 6.8\left(\text { at } 85^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 0.7 \\ 0.9\left(\text { at } 85^{\circ} \mathrm{C}\right) \end{gathered}$
D10	9	180	$\begin{gathered} 6.3 \\ 7.9\left(\text { at } 85^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 0.8 \\ 1.0\left(\text { at } 85^{\circ} \mathrm{C}\right) \end{gathered}$
D12	12	240	$\begin{gathered} 7.3 \\ 9.2\left(\text { at } 85^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} 1.0 \\ 1.3\left(\text { at } 85^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$

Coil Data (FBR52 series)

Coil code	Rated Coil Voltage	Coil Resistance $+/-10 \%$	Must Operate Voltage*	Must Release Voltage*
	(VDC)	(Ω)	(VDC)	(VDC)
D06	6	45	3.6 $4.5\left(\right.$ at $\left.85^{\circ} \mathrm{C}\right)$	0.5 $0.7\left(\right.$ at $\left.85^{\circ} \mathrm{C}\right)$
D09	6	100	5.4 $6.8\left(\right.$ at $\left.85^{\circ} \mathrm{C}\right)$	0.7 $0.9\left(\right.$ at $\left.85^{\circ} \mathrm{C}\right)$
D10	9	135	6.3 $7.9\left(\right.$ at $\left.85^{\circ} \mathrm{C}\right)$	0.8 $1.0\left(\right.$ at $\left.85^{\circ} \mathrm{C}\right)$
D12	12	180	7.3 $9.2\left(\right.$ at $\left.85^{\circ} \mathrm{C}\right)$	1.0

Note: All values in the table are valid at 20oC and zero contact current, unless otherwise specified.
*: Specified operated values are valid for pulse wave voltage.
Please use at rated coil voltage. Please refer to characteristic data and set up adequate voltage in case of use at over voltage.

Not for New Design

FBR51, 52 Series

■ Characteristic Data (Reference)

* Characteristic data is not a guaranteed value, but measured values of samples from production line.

Contact resistance

- Test item 20A 14VDC motor free 400,000 operations minimum (FBR51N()-W1 type)

- Test circuit

Contact resistance

Not for New Design

FBR51, 52 Series

- Life test (example)

- Current wave form

Test item Inrush 11A 14VDC flasher, hazard lamp (80W)load 2,500,000 operations minimum (FBR51N()-WF type)

- Test circuit

Not for New Design

Coil Temperature Rise

Operating Coil Voltage Range

[FBR51ND12-()]

Coil Temperature Rise

Shock Resistance Characteristics

O : N.C.contact (coil de-energized)
N.O.contact: min. $1,000 \mathrm{~m} / \mathrm{s}^{2}$ in all directions

Shock application time: $6^{+/-1} \mathrm{~ms}$, half-sine wave Test material: coil, energized and de-energized Shock direction: set under diagram Detection level: chatter > 1 ms .

Not for New Design

FBR51, 52 Series

Maximum Switching Power

Live Curve

14VDC locked motor load

Initial Distributions data

Not for New Design FBR51, 52 Series

- Dimensions
- Dimensions

* Dimensions of the terminals do not include thickness of pre-solder.
- Schematics (BOTTOM VIEW)

FBR50-WL

FBR50-WF

Refer to the test circuit at CHARACTERISTIC DATA for connection, and polarity.

- PC Board Mounting Hole Layout (BOTTOM VIEW)

(): Reference value Unit: mm
* Tolerance of PC board mounting hole layout : ± 0.1 unless otherwise specified.

Cautions

- All values mentioned in this datasheet are provided under ideal conditions. Please perform the confirmation test before actual use.
- Please connect relay coils according to specified polarity.
- Reflow soldering is prohibited.
- Do not use relays in the atmosphere with sulfide gas, chloride gas or nitric oxide. Contact resistance may increase.
- Do not use silicon or silicon-containing product or materials near relays. It may cause contact failure.

GENERAL INFORMATION

1. ROHS Compliance

- All relays produced by Fujitsu Components are compliant with RoHS directive 2011/65/EU including amendments.
- Use of Cadmium in electrical contacts is exempted as per Annex III of the RoHS directive 2011/65/EU. Please consider expiry date of exemption. Relays with Cadmium containing contacts are not to be used for new designs.
- All relays are lead-free. Please refer to Lead-Free Status Info for older date codes at: http://www.fujitsu.com/downloads/MICRO/fcai/relays/lead-free-letter.pdf
- Characteristic data is not guaranteed values, but measured values of samples from production line.

2. Recommended lead free solder condition

- Lead free solder plating on relay terminals is $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$, unless otherwise specified. This material has been verified to be compatible with PbSn assembly process.
- Recommended solder for assembly: Sn-3.0Ag-0.5Cu.

Flow Solder Condition:

Pre-Heating:	maximum $120^{\circ} \mathrm{C}$ within 90 sec.
Soldering:	dip within 5 sec. at $255^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ solder bath
Relay must be cooled by air immediately after soldering	

Solder by Soldering Iron:	
Soldering Iron:	$30-60 \mathrm{~W}$
Temperature:	maximum $350-360^{\circ} \mathrm{C}$
Duration:	maximum 3 sec.

We highly recommend that you confirm your actual solder conditions

3. Moisture Sensitivity

- Moisture Sensitivity Level standard is not applicable to electromechanical relays, unless otherwise indicated.

4. Tin Whiskers

- Dipped SnAgCu solder is known as presenting a low risk to tin whisker development. No considerable length whisker was found by our in house test.

Fujitsu Components International Headquarter Offices

Japan
FUJITSU COMPONENT LIMITED
Shinagawa Seaside Park Tower 19F,
12-4, Higashi-shinagawa 4-chome, Shinagawa-ku,
Tokyo,140-0002, Japan
Tel: (81-3) 3450-1682
Fax: (81-3) 3474-2385
Email: fcl-contact@cs.jp.fujitsu.com
Web: www.fujitsu.com/jp/fcl/
North and South America
FUJITSU COMPONENTS AMERICA, INC
2290 North First Street, Suite 212
San Jose, CA 95131, USA
Tel: (1-408) 745-4900
Fax: (1-408) 745-4970
Email: components@us.fujitsu.com
Web: us.fujitsu.com/components

Europe
FUJITSU COMPONENTS EUROPE B.V.
Diamantlaan 25
2132 WV Hoofddorp
Netherlands
Tel: (31-23) 5560910
Fax: (31-23) 5560950
Email: info@feu.fujitsu.com
Web: www.fujitsu.com/uk/components

Asia Pacific

FUJITSU COMPONENTS ASIA, LTD.
102E Pasir Panjang Road
\#01-01 Citilink Warehouse Complex
Singapore 118529
Tel: (65) 6375-8560
Fax: (65) 6273-3021
Email: fcal@sg.fujitsu.com
Web: www.fujitsu.com/sg/products/devices/components
China
FUJITSU ELECTRONIC COMPONENTS (SHANGHAI) CO., LTD.
Unit 4306, InterContinental Center
100 Yu Tong Road, Shanghai 200070,
China
Tel: (86-21) 32530998
Fax: (86-21) 32530997
Email: fcal@sg.fujitsu.com
Web: www.fujitsu.com/sg/products/devices/components

Hong Kong

FUJITSU COMPONENTS HONG KONG CO., LTD
Unit 506, Inter-Continental Plaza
No. 94 Granville Road, Tsim Sha Tsui, Kowloon,
Hong Kong
Tel: (852) 2881-8495
Tex: (852) 2894-9512
Email: fcal@sg.fujitsu.com

Web: www.fujitsu.com/sg/products/devices/components/

Korea
FUJITSU COMPONENTS KOREA LIMITED
Alpha Tower \#403, 645 Sampyeong-dong,
Bundang-gu, Seongnam-si, Gyeonggi-do,
13524 Korea
Tel: (82) 31-708-7108
Fax: (82) 31-709-7108
Email: fcal@sg.fujitsu.com
www.fujitsu.com/sg/products/devices/components/
©2019 Fujitsu Components Europe B.V. All rights reserved. All trademarks or registered trademarks are the property of their respective owners.
The contents, data and information in this datasheet are provided by Fujitsu Component Ltd. as a service only to its user and only for general information purposes.
The use of the contents, data and information provided in this datasheet is at the users' own risk.
Fujitsu has assembled this datasheet with care and will endeavor to keep the contents, data and information correct, accurate, comprehensive, complete and up to date.
Fujitsu Components Europe B.V. and affiliated companies do however not accept any responsibility or liability on their behalf, nor on behalf of its employees, for any loss or damage, direct, indirect or consequential, with respect to this datasheet, its contents, data, and information and related graphics and the correctness, reliability, accuracy, comprehensiveness, usefulness, availability and completeness thereof.
Nor do Fujitsu Components Europe B.V. and affiliated companies accept on their behalf, nor on behalf of its employees, any responsibility or liability for any representation or warrant of any kind, express or implied, including warranties of any kind for merchantability or fitness for particular use, with respect to these datasheets, its contents, data, information and related graphics and the correctness, reliability, accuracy, comprehensiveness, usefulness, availability and completeness thereof. Rev. January 11, 2019

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Automotive Relays category:
Click to view products by Fujitsu manufacturer:
Other Similar products are found below :
7-1414968-8 7-1617345-6 9-1617516-5 G5CE1ASIDC12 1393204-2 1393302-3 13Z99A115-0074 1432872-1 1617057-2 $\underline{1617058-6}$ 1617518-5 2-1617057-2 2-1617057-6 2-1617058-3 CB1F-M-12V-H15 898H-1AH-D-001-12VDC 24198-1 4-1617057-0 41FZ-200ACGBSL 5-1616920-2 5-1617052-9 5407-0011-HS CB1AF-M-12V-H59 5-1617346-8 103-1AH-C-12VDC V23134A1052X299 6-1393302-1 897H-1AH-D-R1-U01-12VDC FTR-P3CP024W1-06 1-1617057-8 3-1393305-1 5436-0001-HS V23086-R1851-A502 898H-1AH-D1SW-R1-12VDC RH4C1P2607 RE031005 V23134M0052G242 23234B0001X001-EV-144 V23234-A1001-X036 2138602-1 3-1904020-8 FBR56ND12-W1 S11-1A-C1-12VDC S11-1A-C1-24VDC FRC2U-DC12 FRC7A-S-DC24V FTR-P6GN012WA LQ-12 2-1414939-2 FRC7C-S-DC12V

[^0]: * 1: Minimum switching loads mentioned above are reference values. Please perform the confirmation test with actual load before production since reference values may vary according to switching frequencies, environmental conditions and expected reliability levels.
 Care shall be taken on the heat generated on PC board when maximum carrying current exceeds 10A. Please perform the confirmation test with actual conditions.

[^1]: *1: Minimum switching loads mentioned above are reference values. Please perform the confirmation test with actual load before production since reference values may vary according to switching frequencies, environmental conditions and expected reliability levels.
 Care shall be taken on the heat generated on PC board when maximum carrying current exceeds 10A. Please perform the confirmation test with actual conditions.

