

BT131S Series

1.0A 4Quadrants TRIACs

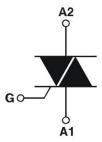
Product Summary

Symbol	Value	Unit
I _{T(RMS)}	1.0	Α
$V_{DRM}V_{RRM}$	600/800	V
V _{TM}	1.55	V

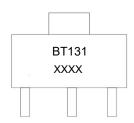
Feature

With high ability to withstand the shock loading of large current, With high commutation performances, 4 quadrants products especially recommended for use on inductive load.

Application


Washing machine, vacuums, massager, solid state relay, AC Motor speed regulation and so on.

Package



SOT-223-3L

Circuit diagram

Marking

1.0A 4Quadrants TRIACs

Absolute maximum ratings (Ta=25℃ unless otherwise noted)

Parameter	Symbol	Value		Unit
Repetitive peak off-state voltage	V_{DRM}	600/800		V
Repetitive peak reverse voltage	V _{RRM}	600/800		V
RMS on-state current	I _{T(RMS)}	1		Α
Non repetitive surge peak on-state current (full cycle, F=50Hz)	I _{TSM}	16		А
I ² t value for fusing (tp=10ms)	l ² t	1.28		A ² s
Critical rate of rise of on-state current ($I_G = 2 \times I_{GT}$)	dl/dt	I - II -III IV	50 10	- A/μs
Peak gate current	I _{GM}	2		А
Average gate power dissipation	P _{G(AV)}	0.5		W
Junction Temperature	T _J -40 ~ +125		+125	$^{\circ}$ C
Storage Temperature	T _{STG}	-40 ~ +150		$^{\circ}$ C

Electrical characteristics (T_A=25 °C, unless otherwise noted)

Parameter	Symbol	Test Condition		Value		Unit				
Gate trigger current	I _{GT}	$V_D = 12V I_T = 0.1A$ $T_j = 25 ^{\circ}C$	I - II -III	MAX.	5	mA				
			IV		10					
Gate trigger voltage	V_{GT}		I - II -III-IV	MAX.	1.3	V				
Gate non-trigger voltage	V_{GD}	V _D =V _{DRM} T _j =125°C		MIN.	0.2	V				
latching current	ΙL	$V_D = 12V I_{GT} = 0.1A$ $T_j = 25 ^{\circ}C$	I -III-IV	MAX.	10	- mA				
			II		15					
Holding current	lμ		I - II -III-IV	MAX.	5	mA				
Critical-rate of rise	dV/dt	Vs=2/3Vssu Gate On	en T₁=125°	MIN.	50	V/µs				
of commutation voltage	u v/ut	V _D =2/3V _{DRM} Gate Open T _j =125℃		IVIIIN.	50	ν/μ5				
STATIC CHARACTERISTICS										
Forward "on" voltage	V_{TM}	I _{TM} =1.5A tp=380μs		MAX.	1.55	V				
Repetitive Peak Off-State Current	I _{DRM}	$V_D = V_{DRM} V_R = V_{RRM}$	T _j =25℃	MAX.	5	μA				
Repetitive Peak Reverse Current	I _{RRM}	VD -VDRM VR -VRRM	T _j =125℃	MAX.	100	μA				
THERMAL RESISTANCES										
Thermal resistance	Rth(j-c)	Junction to case(AC)		TYP.	23	°C/W				
	Rth(j-a)	Junction to ambient		TYP.	60	°C/W				

1.0A 4Quadrants TRIACs

Typical Characteristics

FIG.1: Maximum power dissipation versus RMS

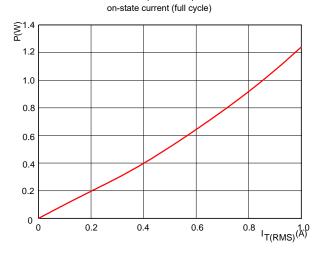


FIG.2: RMS on-state current versus case temperature (full cycle)

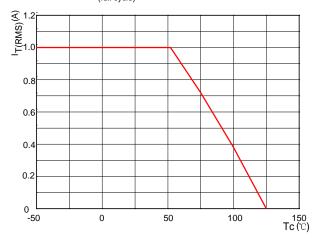


FIG.3: Surge peak on-state current versus number of cycles

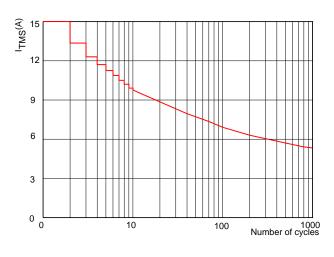


FIG.4: On-state characteristics (maximum values)

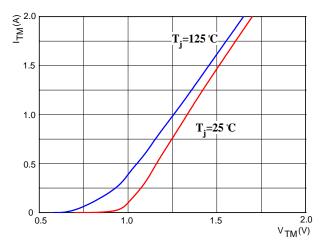
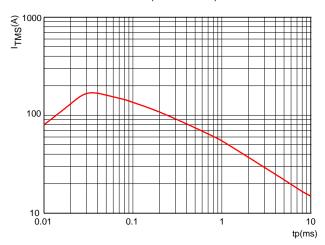
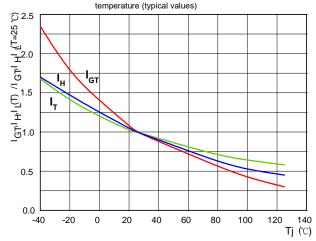
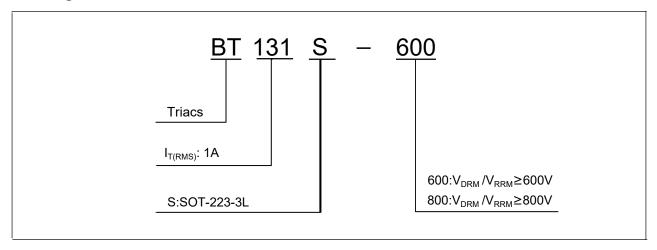
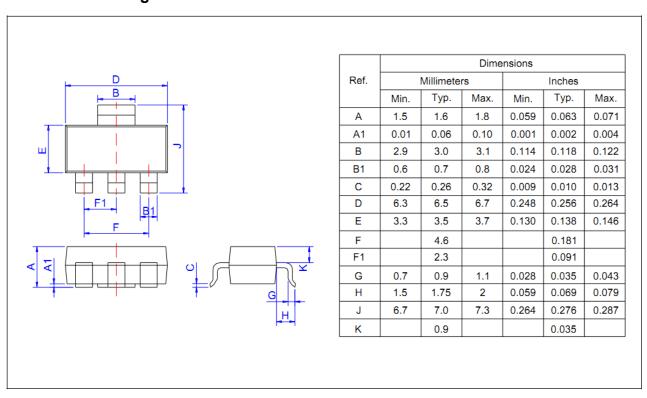


FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp < 10ms


FIG.6: Relative variations of gate trigger current, holding current and latching current versus junction



1.0A 4Quadrants TRIACs

Ordering Information

SOT-223-3L Package Information

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by FUXINSEMI manufacturer:

Other Similar products are found below:

BT137-600-0Q OT415Q 2N6075A NTE5688 BTA2008W-800D,135 D31410 QJ8006NH4TP QJ8010NH5TP QJ8008NH4TP
QJ8006NH4RP QJ8010RH5TP QJ8010NH4TP QJ8006LH4TP BT136-600,127 BT137B-800,118 BT138-800E,127 BTA140-600,127
BTA208-800B,127 BTA225-800B,127 MAC97A6,116 BTA420-800BT,127 BTA201W-800E,115 BTA212B-800B,118 MCR100-8 100-8
BT131S MCR100-6 MCR100-8 BT136S-800E BT134S-600E BT151-650R BT136-800E BTA12-800B BT138S-800E MAC97A8
BT137S-800E BT169-23 BT131-89-2L MAC97A6-23-3L BT169-89-2L BT139-800E MCR100-8 BT169-MS MCR100-8 MCR100-6
BTA408X-1000C0T,127 ACT108-800EQP BTA201-800ER,116 T810 2P4M BT137-600E