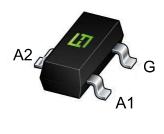


MAC97A6L

0.8A 4Quadrants TRIACs

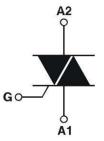
Product Summary

Symbol	Value	Unit
I _{T(RMS)}	0.8	Α
V _{DRM} V _{RRM}	600	V
V _{TM}	1.55	V

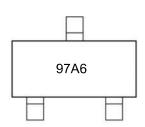

Feature

With high ability to withstand the shock loading of large current, With high commutation performances, 4 quadrants products especially recommended for use on inductive load.

Application


Washing machine, vacuums, massager, solid state relay, AC Motor speed regulation and so on.

Package



SOT-23-3L

Circuit diagram

Marking

MAC97A6L

0.8A 4Quadrants TRIACs

Absolute maximum ratings (Ta=25℃ unless otherwise noted)

Parameter	Symbol	Value		Unit	
Repetitive peak off-state voltage	V_{DRM}	600		V	
Repetitive peak reverse voltage	V_{RRM}	600		\ \	
RMS on-state current	I _{T(RMS)}	0.8		Α	
Non repetitive surge peak on-state current (full cycle, F=50Hz)	Ітѕм	8		А	
I ² t value for fusing (tp=10ms)	l ² t	0.32		A ² s	
Critical rate of rise of on-state current ($I_G = 2 \times I_{GT}$)	dl/dt	I - II -III	50 10	A/µs	
Peak gate current	Івм			A	
Average gate power dissipation	P _{G(AV)}	0.5		W	
Junction Temperature	TJ	-40 ~ +125		${\mathbb C}$	
Storage Temperature	T _{STG}	-40 ~ +150		$^{\circ}\mathbb{C}$	

Electrical characteristics (T_A=25 °C, unless otherwise noted)

Parameter	Symbol	Test Condition		Value		Unit				
Gate trigger current	I _{GT}	$V_D = 12V I_T = 0.1A$ $T_j = 25 ^{\circ}C$	I - II - III	MAX.	5	mA				
			IV		7					
Gate trigger voltage	V_{GT}		I - II -III-IV	MAX.	1.2	>				
Gate non-trigger voltage	V_{GD}	V _D =V _{DRM} T _j =125℃		MIN.	0.2	٧				
latching current	I _L	$V_D = 12V I_{GT} = 0.1A$ $T_j = 25^{\circ}C$	I -III-IV	MAX.	10	mA				
			II		15					
Holding current	Iн		I - II -III-IV	MAX.	10	mA				
Critical-rate of rise	dV/dt	Va=2/3Vanu Gate On	on T⊢=125°	MIN.	30	V/µs				
of commutation voltage	u v/ut	V _D =2/3V _{DRM} Gate Open T _j =125℃		IVIIIN.	30	ν/μ5				
STATIC CHARACTERISTICS										
Forward "on" voltage	V_{TM}	I _{TM} =1.2A tp=380μs		MAX.	1.55	V				
Repetitive Peak Off-State Current	I _{DRM}	$V_D = V_{DRM} V_R = V_{RRM}$	T _j =25℃	MAX.	5	μA				
Repetitive Peak Reverse Current	I _{RRM}	VD -VDRM VR -VRRM	T _j =125℃	MAX.	100	μA				
THERMAL RESISTANCES										
Thermal resistance	Rth(j-c)	Junction to case(AC)		TYP.	60	°C/W				
	Rth(j-a)	Junction to ambient		TYP.	150	°C/W				

0.8A 4Quadrants TRIACs

Typical Characteristics

FIG.1: Maximum power dissipation versus RMS

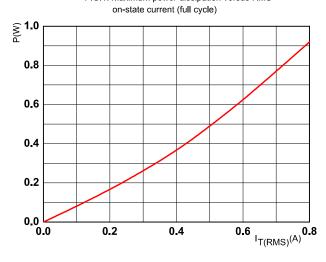


FIG.2: RMS on-state current versus case temperature (full cycle)

FIG.3: Surge peak on-state current versus number of cycles

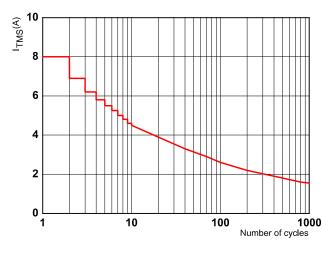


FIG.4: On-state characteristics (maximum values)

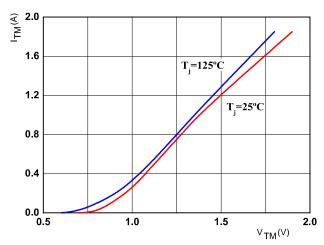
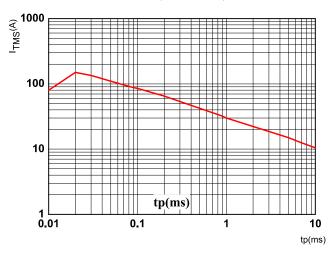
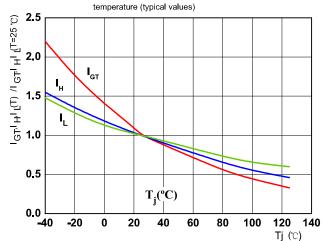
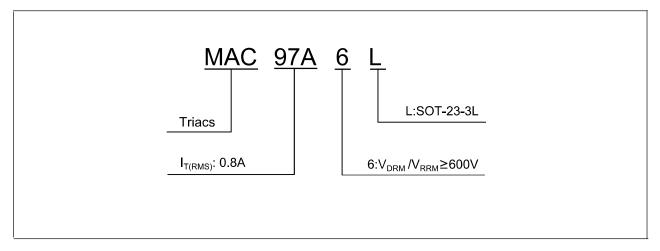
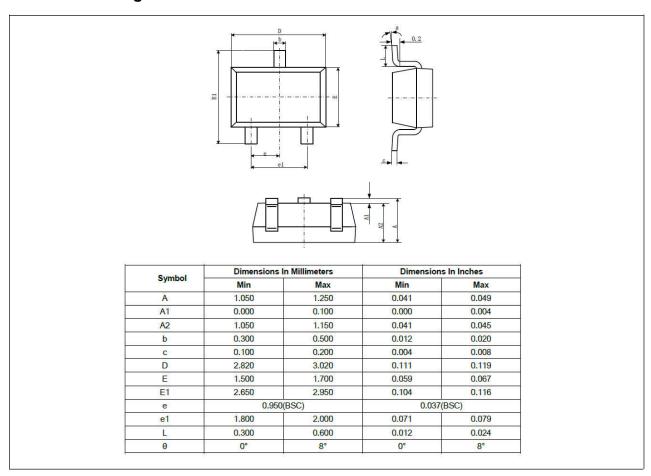


FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp < 10ms


FIG.6: Relative variations of gate trigger current, holding current and latching current versus junction



0.8A 4Quadrants TRIACs

Ordering Information

SOT-23-3L Package Information

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by FUXINSEMI manufacturer:

Other Similar products are found below:

BT137-600-0Q OT415Q 2N6075A NTE5688 BTA2008W-800D,135 D31410 BT136-600,127 BT137B-800,118 BTA140-600,127
BTA208-800B,127 MAC97A6,116 BTA420-800BT,127 BTA201W-800E,115 BTA212B-800B,118 BTA41-800BRG TMA164P-L
TMA166P-L TMA54S-L BT137-600E,127 BTA140-800,127 BTA30-600CW3G BTB16-600CW3G TMA84S-L Z0109MN,135 T825T-6I
T1635T-6I T1220T-6I NTE5638 ACST1235-8FP BT134-600D,127 BT134-600G,127 BT136X-600E,127 BT139X-800,127 BTA204X800C,127 BTA208X-1000C0,127 BTA216-600E,127 BTA316X-600E/DG,12 BTA316X-800C,127 BT134-600D,127 BT134-600E,127
BT137X-600D,127 BT139X-600E,127 BTA08-600BW3G BTA201-800ER,126 BTA208X-1000B,127 BTA316X-800E,127 NTE56008
NTE56017 NTE56018 NTE56059