Features

－On－Resistance： 1.5Ω（TYP）
－－3dB Bandwidth： 100 MHz
－Single－Supply Operation：＋1．8V～＋5．5V
－Break－Before－Make Switching
－Rail－to－Rail Operation
－Low Static Power
－TTL／CMOS Compatible
－Operating Temperature： $\mathbf{- 4 0 ^ { \circ }} \mathrm{C} \boldsymbol{\sim}+125^{\circ} \mathrm{C}$
－Small Package：
GS3221 Available in SOT23－6 and SC70－6 Packages

General Description

The GS3221 is low on－resistance（1．5 $)$ ，fast single－pole double－throw（SPDT）CMOS switch with operation range $+1.8 \mathrm{~V} \sim$ +5.5 V ．The GS3221 is designed for low operating voltage，high current switching of signal gating，chopping，modulation or demodulation（modem），and speaker output for cell phone applications．
The device contains a break－before－make（BBM）feature．The control input，IN，tolerates input drive signals up to 5.5 V ， independent of supply voltage．
All devices are specified for the temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ．The GS3221 single is available in Green SC70－6 and SOT23－6 packages．

Applications

－Battery－Operated Equipment
－Wearable Devices
－Computer Peripherals
－Portable Systems
－Cell Phones
－PDAs

Pin Configuration

Figure 1．Pin Assignment Diagram

Absolute Maximum Ratings

Condition	Min	Max
Power Supply Voltage（VDD to Vss）	－0．5V	＋7．5V
Analog Input Voltage（NC NO or COM）	Vss－0．5V	$\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
PDB Input Voltage	Vss－0．5V	＋7V
Operating Temperature Range	$-40^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Junction Temperature	$+160^{\circ} \mathrm{C}$	
Storage Temperature Range	$-55^{\circ} \mathrm{C}$	$+150^{\circ} \mathrm{C}$
Lead Temperature（soldering，10sec）	$+260^{\circ} \mathrm{C}$	
Package Thermal Resistance（ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ）		
SOT23－6， JJA	$190^{\circ} \mathrm{C} / \mathrm{W}$	
SC70－6，$\theta_{\text {JA }}$	$333^{\circ} \mathrm{C} / \mathrm{W}$	
ESD Susceptibility		
HBM	3500V	
MM	300 V	

Note：Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device．This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied．Exposure to absolute maximum rating conditions for extended periods may affect reliability．

Package／Ordering Information

MODEL	CHANNEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
GS3221	Single	GS3221－CR	SC70－6	Tape and Reel，3000	3221
		SOT23－6	Tape and Reel，3000	3221	

GS3221
Electrical Characteristics
（At $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$ ，and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

ANALOG SWITCH

Analog Signal Range	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\text {NC }}, \mathrm{V}_{\text {com }}$		Vs	Vs	Vs	MAX	v
On－Resistance	Ron	$\begin{aligned} & \mathrm{Vs}_{\mathrm{s}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{No}} \text { or } \mathrm{V}_{\mathrm{NC}}=3.5 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\mathrm{COM}}=-10 \mathrm{~mA} \text {, Test Circuit } 1 \end{aligned}$	1.5			TYP	Ω
On－Resistance Match Between Channels	$\Delta \mathrm{R}_{\text {on }}$	$\begin{aligned} & \mathrm{Vs}_{\mathrm{s}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3.5 \mathrm{~V} \text {, } \\ & \mathrm{I}_{\mathrm{COM}}=-10 \mathrm{~mA} \text {, Test Circuit } 1 \end{aligned}$	1.0			TYP	Ω
		$\begin{aligned} & \mathrm{Vs}_{\mathrm{s}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3.5 \mathrm{~V} \text {, } \\ & \text { Icom }=-10 \mathrm{~mA} \text {, Test Circuit } \end{aligned}$	3.0			MAX	Ω
On－Resistance Flatness	$\mathrm{R}_{\text {flaton）}}$	$\begin{aligned} & \mathrm{Vs}_{\mathrm{s}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.0 \mathrm{~V}, 2.0 \mathrm{~V}, \\ & 3.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-10 \mathrm{~mA} \text {, Test Circuit } 1 \end{aligned}$	0.2			TYP	Ω
		$\begin{aligned} & \mathrm{Vs}_{\mathrm{s}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.0 \mathrm{~V}, 2.0 \mathrm{~V}, \\ & 3.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{CoM}}=-10 \mathrm{~mA} \text {, Test Circuit } 1 \end{aligned}$	0.45			MAX	Ω
Source OFF Leakage Current	$\mathrm{I}_{\mathrm{NC}(\text {（FFF })}, \mathrm{I}_{\text {No（OFF）}}$	$\begin{aligned} & \mathrm{Vs}_{\mathrm{s}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.0 \mathrm{~V}, 4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V}, 1.0 \mathrm{~V} \end{aligned}$	± 1			MAX	$\mu \mathrm{A}$
Channel ON Leakage Current		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.0 \mathrm{~V}, 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.0 \mathrm{~V}, 4.5 \mathrm{~V} \text {, or floating } \end{aligned}$	± 1			MAX	$\mu \mathrm{A}$
DIGITAL INPUTS							
Input High Voltage	$\mathrm{V}_{\text {INH }}$	V s $=5 \mathrm{~V}$	1.5			MIN	V
		$\mathrm{V}=3 \mathrm{~V}$	0.9			MIN	V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$	$\mathrm{Vs}=5 \mathrm{~V}$	0.55			MAX	V
		V s $=3 \mathrm{~V}$	0.45			MAX	V
Input Leakage Current	$\mathrm{I}_{1 \times}$	$\mathrm{Vs}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or 5.5 V	± 1			MAX	$\mu \mathrm{A}$

（At $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$ ，and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

PARAMETER	SYMBOL	CONDITIONS		$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \sim 85^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} -40^{\circ} \mathrm{C} \\ \sim 125^{\circ} \mathrm{C} \end{gathered}$	LIMIT	UNITS
DYNAMIC CHARACTERISTICS								
Turn－On Time	Ton	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathbb{I} _\mathrm{H}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N} \mathrm{L}}= \\ & 0 \mathrm{~V} \text {, } \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, Test Circuit } 2 \end{aligned}$		20			TYP	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO} \text { or }} \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathbb{N} _\mathrm{H}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N L}} \\ & =0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, Test Circuit } 2 \end{aligned}$		28			TYP	ns
Turn－Off Time	TofF	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} _\mathrm{H}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}= \\ & 0 \mathrm{~V} \text {, } \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, Test Circuit } 2 \end{aligned}$		23			TYP	ns
		$\begin{aligned} & V_{S}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathbb{N} _H}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N _ L}} \\ & =0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \text { Test Circuit } 2 \end{aligned}$		22			TYP	ns
Break－Before－Make Time Delay	$\mathrm{T}_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO} 1} \text { or } \mathrm{V}_{\mathrm{NC} 1}=\mathrm{V}_{\mathrm{NO} 2} \text { or } \mathrm{V}_{\mathrm{NC} 2}=3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, Test Circuit } 3 \end{aligned}$		23			TYP	ns
		$\begin{aligned} & V_{s}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO} 1} \text { or } \mathrm{V}_{\mathrm{NC} 1}=\mathrm{V}_{\mathrm{NO} 2} \text { or } \mathrm{V}_{\mathrm{NC} 2}=3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, Test Circuit } 3 \end{aligned}$		27			TYP	ns
Skew	$\mathrm{T}_{\text {SKEW }}$	Vs $=5 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=39 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ ，Test Circuit 4		9			TYP	ns
		$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=39 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ ，Test Circuit 4		9			TYP	ns
Off Isolation	$\mathrm{O}_{\text {ISo }}$	$\begin{gathered} R_{L}=50 \Omega, \text { Signal }=0 d B m, \\ C_{L}=5 p F, \text { Test Circuit } 5 \end{gathered}$	$\mathrm{f}=10 \mathrm{MHz}$	－40			TYP	db
			$\mathrm{f}=1 \mathrm{MHz}$	－60			TYP	db
－3dB Bandwidth	BW	$R_{L}=50 \Omega$ ，Signal $=0 \mathrm{dBm}, C_{L}=5 p F$ ，Test Circuit 6		100			TYP	MHz
Source OFF Capacitance	$\mathrm{C}_{\text {NC（OFF）}}, \mathrm{C}_{\text {NO（OFF）}}$	$\mathrm{f}=1 \mathrm{MHz}$		12			TYP	pF
Channel ON Capacitance	$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}, \mathrm{C}_{\mathrm{NO}(\mathrm{ON})}, \mathrm{C}_{\text {COM（ON）}}$	$\mathrm{f}=1 \mathrm{MHz}$		40			TYP	pF
POWER REQUIREMENTS								
Power Supply Range	Vs			1.8			MIN	V
Power Supply Range	Vs			5.5			MAX	V
Power Supply Current	Is	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V s		1			MAX	$\mu \mathrm{A}$

Typical Performance characteristics

At $T_{A}=+25^{\circ} \mathrm{C}$ ，and $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$ ，unless otherwise noted．

Parameter Measurement Information

Test Circuit 1．On－Resistance

Test Circuit 2．Switching Times

Test Circuit 3．Break－Before－Make Time Delay

GS3221

Parameter Measurement Information

Test Circuit 4．Output Signal Skew

Test Circuit 5．Off Isolation

Test Circuit 6．－3dB Bandwidth

Package Information

SC70－6

Symbol	Dimensions In Millimeters		Dimensions In Inches			
	Min．	Max．	Min．	Max．		
A	0.900	1.100	0.035	0.043		
A1	0.000	0.100	0.000	0.004		
A2	0.900	1.000	0.035	0.039		
b	0.150	0.350	0.006	0.014		
c	0.080	0.150	0.003	0.006		
D	2.000	2.200	0.079	0.087		
E	2.150	2.450	0.085	0.096		
E1	1.150	1.350	0.045	0.053		
e	0.650 TYP．		0.026 TYP．			
e1	1.200	1.400	0.047	0.055		
L	0.260	0.460	0.010	0.018		
L1	$0.525 ~ R E F . ~$		8°	0.021 REF．		
θ	$0 \quad$					

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	MIN	MAX	MIN	MAX
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
c	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950 BSC		0.037 BSC	
e1	1.900 BSC		0.075 BSC	
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Gainsil manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB MAX4762ETB+ NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQEX PI5A392AQE FSA634UCX NX3L1T5157GMZ ADG714BCPZ-REEL7 HT4051ARZ TC4066BP(N,F) DG302BDJ-E3 ADG854BCPZ-REEL7 PI5A100WE PI5A100QEX HV2733FG-G HV2701FG-G HV2301FG-G HV2301FG-G-M931 RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX391CPE+ MAX4744ELB+ MAX4730EXT+T MAX4730ELT+ MAX333AEWP+ BU4066BC MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G NX3L4684TK,115 NX5L2750CGUX NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G

