

Features

Single-Supply Operation from +2.1V ~ +5.5V

• Rail-to-Rail Input / Output

• Gain-Bandwidth Product: 1MHz (Typ)

Low Input Bias Current: 1pA (Typ)

Low Offset Voltage: 0.4mV (Max)

Quiescent Current: 40µA per Amplifier (Typ)

• Operating Temperature: -40°C ~ +125°C

• Embedded RF Anti-EMI Filter

• Small Package:

GS321A Available in SOT23-5 and SC70-5 Packages GS358A Available in SOP-8 and MSOP-8 Packages

General Description

The GS321A/358A family have a high gain-bandwidth product of 1MHz, a slew rate of $0.6V/\mu s$, and a quiescent current of $40\mu A/amplifier$ at 5V. The GS321A/358A family is designed to provide optimal performance in low voltage and low noise systems. They provide rail-to-rail output swing into heavy loads. The input common mode voltage range includes ground, and the maximum input offset voltage is 0.5mV for GS321A/358A family. They are specified over the extended industrial temperature range (- $40^{\circ}C$ to + $125^{\circ}C$). The operating range is from 2.1V to 5.5V. The GS321A single is available in Green SC70-5 and SOT23-5 packages. The GS358A Dual is available in Green SOP-8 and MSOP-8 packages.

Applications

- ASIC Input or Output Amplifier
- Sensor Interface
- Medical Communication
- Smoke Detectors

- Audio Output
- Piezoelectric Transducer Amplifier
- Medical Instrumentation
- Portable Systems

Pin Configuration

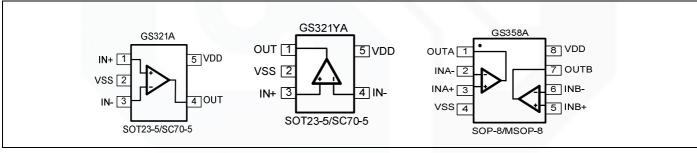


Figure 1. Pin Assignment Diagram

Absolute Maximum Ratings

Condition	Min	Max		
Power Supply Voltage (V _{DD} to Vss)	-0.5V	+7.5V		
Analog Input Voltage (IN+ or IN-)	Vss-0.5V	V _{DD} +0.5V		
PDB Input Voltage	Vss-0.5V	+7V		
Operating Temperature Range	-40°C	+125°C		
Junction Temperature	+160)°C		
Storage Temperature Range	-55°C	+150°C		
Lead Temperature (soldering, 10sec)	+260)°C		
Package Thermal Resistance (T _A =+25℃)				
SOP-8, θ _{JA}	125°0	C/W		
MSOP-8, θ _{JA}	216°0	C/W		
SOT23-5, θ _{JA}	190°0	C/W		
SC70-5, θ _{JA}	333°(333°C/W		
ESD Susceptibility				
HBM 6KV				
MM	300)V		

Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

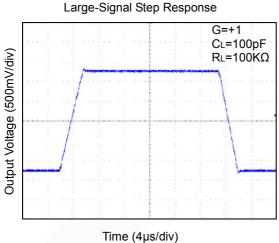
Package/Ordering Information

MODEL	CHANNEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
		GS321A-CR	SC70-5	Tape and Reel,3000	321
CC224 A	Cimala	GS321A-TR	SOT23-5	Tape and Reel,3000	321
GS321A	Single	GS321YA-CR	SC70-5	Tape and Reel,3000	321Y
		GS321YA-TR	SOT23-5	Tape and Reel,3000	321Y
CCSEGA	Duel	GS358A-SR	SOP-8	Tape and Reel,4000	GS358
GS358A	Dual	GS358A-MR	MSOP-8	Tape and Reel,3000	GS358

Electrical Characteristics

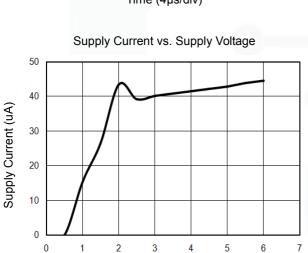
(At $V_S = +5V$, $R_L = 100k\Omega$ connected to $V_S/2$, and $V_{OUT} = V_S/2$, unless otherwise noted.)

			GS321A/358A				
PARAMETER	SYMBOL	SYMBOL CONDITIONS		MIN/MAX OVER TEMPERATURE			
			+25℃	+25℃	-40℃ to +85℃	UNITS	MIN/MAX
INPUT CHARACTERISTICS							•
Input Offset Voltage	Vos	$V_{CM} = V_S/2$	0.1	0.4	0.8	mV	MAX
Input Bias Current	I _B		1			pA	TYP
Input Offset Current	los		1			pA	TYP
Common-Mode Voltage Range	V _{CM}	V _S = 5.5V	-0.1 to +5.6			٧	TYP
Common Mada Daigation Datio	CMRR	$V_S = 5.5V$, $V_{CM} = -0.1V$ to 4V	70	62	62	dB	MINI
Common-Mode Rejection Ratio	CIVIRR	$V_S = 5.5V$, $V_{CM} = -0.1V$ to $5.6V$	68	56	55		MIN
Open Lean Voltage Cain	^	$R_L = 5k\Omega$, $V_O = +0.1V$ to +4.9V	80	70	70	dB	MIN
Open-Loop Voltage Gain	A _{OL}	$R_L = 10k\Omega$, $V_O = +0.1V$ to +4.9V	100	94	85		IVIIIN
Input Offset Voltage Drift	$\Delta V_{OS}/\Delta_T$	\wedge	2.7			μV/°C	TYP
OUTPUT CHARACTERISTICS							
	V _{OH}	R _L = 100kΩ	4.997	4.990	4.980	٧	MIN
Output Voltage Swing from Rail	V _{OL}	R _L = 100kΩ	3	10	20	mV	MAX
Output Voltage Swing from Rail	V _{OH}	$R_L = 10k\Omega$	4.992	4.970	4.960	٧	MIN
	V _{OL}	$R_L = 10k\Omega$	8	30	40	mV	MAX
Output Current	I _{SOURCE}	D = 100 to V /2	84	60	45	m A	MINI
Output Current	I _{SINK}	$R_L = 10\Omega$ to $V_S/2$	75	60	45	mA	MIN
POWER SUPPLY							
Operating Voltage Bange				2.1	2.5	٧	MIN
Operating Voltage Range				5.5	5.5	٧	MAX
Power Supply Rejection Ratio	PSRR	$V_S = +2.5V \text{ to } +5.5V, V_{CM} = +0.5V$	82	60	58	dB	MIN
Quiescent Current / Amplifier	IQ		40	60	80	μA	MAX
DYNAMIC PERFORMANCE (CL	_ = 100pF)						
Gain-Bandwidth Product	GBP		1			MHz	TYP
Slew Rate	SR	G = +1, 2V Output Step	0.6			V/µs	TYP
Settling Time to 0.1%	t _S	G = +1, 2V Output Step	5			μs	TYP
Overload Recovery Time		V _{IN} ·Gain = V _S	2.6			μs	TYP
NOISE PERFORMANCE							
Voltage Noise Density	6	f = 1kHz	27			nV/\sqrt{Hz}	TYP
voltage Noise Delisity	e _n	f = 10kHz	20			nV / \sqrt{Hz}	TYP



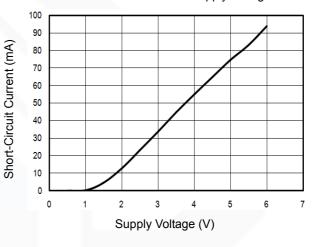
Typical Performance characteristics

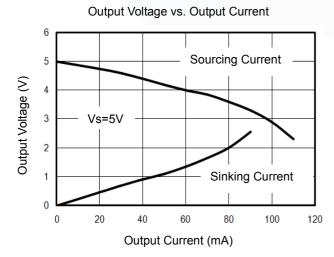
At T_A =+25°C, V_S =+5V, and R_L =100K Ω connected to V_S /2, unless otherwise noted.

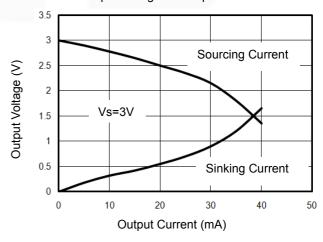


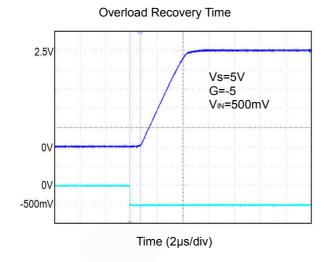
G=+1 CL=100pF RL=100KΩ

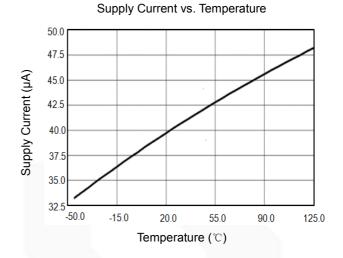
Small-Signal Step Response

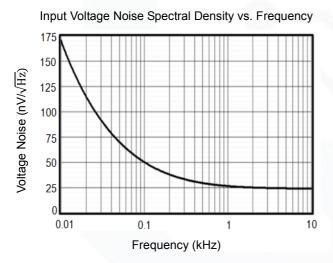

Time (2µs/div)

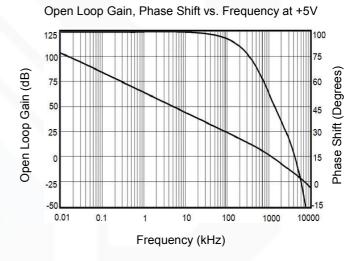

Output Voltage (20mV/div)

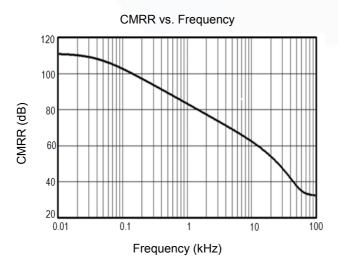

Supply Voltage (V)

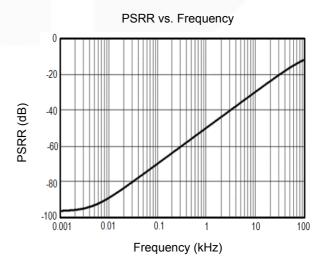

Output Voltage vs. Output Current






Typical Performance characteristics


At T_A =+25°C, V_S =+5V, and R_L =100K Ω connected to V_S /2, unless otherwise noted.



Application Note

Size

GS321A/358A family series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the GS321A/358A family packages save space on printed circuit boards and enable the design of smaller electronic products.

Power Supply Bypassing and Board Layout

GS321A/358A family series operates from a single 2.1V to 5.5V supply or dual ± 1.05 V to ± 2.75 V supplies. For best performance, a 0.1μ F ceramic capacitor should be placed close to the V_{DD} pin in single supply operation. For dual supply operation, both V_{DD} and V_{SS} supplies should be bypassed to ground with separate 0.1μ F ceramic capacitors.

Low Supply Current

The low supply current (typical 40µA per channel) of GS321A/358A family will help to maximize battery life. They are ideal for battery powered systems.

Operating Voltage

GS321A/358A family operates under wide input supply voltage (2.1V to 5.5V). In addition, all temperature specifications apply from -40 °C to +125 °C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-Ion battery lifetime.

Rail-to-Rail Input

The input common-mode range of GS321A/358A family extends 100mV beyond the supply rails (V_{SS} -0.1V to V_{DD} +0.1V). This is achieved by using complementary input stage. For normal operation, inputs should be limited to this range.

Rail-to-Rail Output

Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of GS321A/358A family can typically swing to less than 5mV from supply rail in light resistive loads (> $100k\Omega$), and 60mV of supply rail in moderate resistive loads ($10k\Omega$).

Capacitive Load Tolerance

The GS321A/358A family is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create a pole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain. Figure 2. shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.

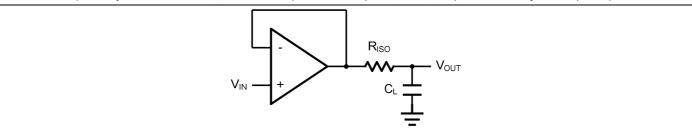


Figure 2. Indirectly Driving a Capacitive Load Using Isolation Resistor

The bigger the R_{ISO} resistor value, the more stable V_{OUT} will be. However, if there is a resistive load R_L in parallel with the capacitive load, a voltage divider (proportional to R_{ISO}/R_L) is formed, this will result in a gain error.

The circuit in Figure 3 is an improvement to the one in Figure 2. R_F provides the DC accuracy by feed-forward the V_{IN} to R_L . C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of C_F . This in turn will slow down the pulse response.

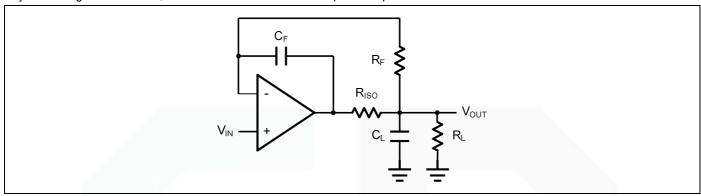


Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy

Typical Application Circuits

Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 4. shown the differential amplifier using GS321A/358A family.

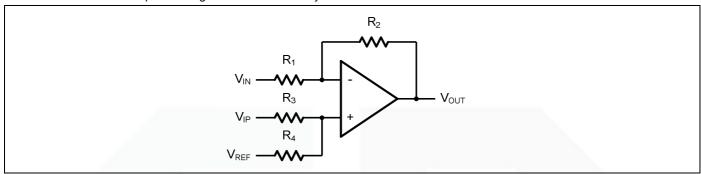


Figure 4. Differential Amplifier

$$V_{\text{OUT}} = (\frac{R_1 + R_2}{R_3 + R_4}) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + (\frac{R_1 + R_2}{R_3 + R_4}) \frac{R_3}{R_1} V_{\text{REF}}$$

If the resistor ratios are equal (i.e. R₁=R₃ and R₂=R₄), then

$$V_{\text{OUT}} = \frac{R_2}{R_1} (V_{\text{IP}} - V_{\text{IN}}) + V_{\text{REF}}$$

Low Pass Active Filter

The low pass active filter is shown in Figure 5. The DC gain is defined by $-R_2/R_1$. The filter has a -20dB/decade roll-off after its corner frequency $f_C=1/(2\pi R_3C_1)$.

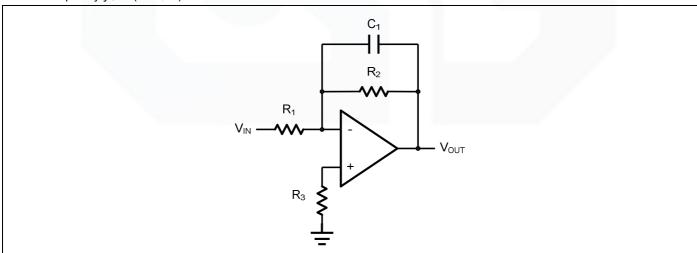
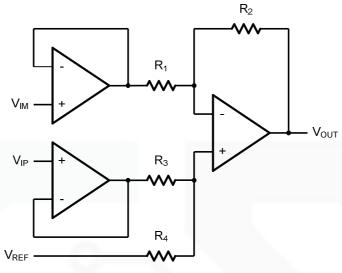
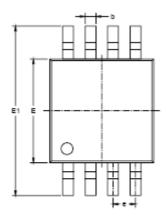


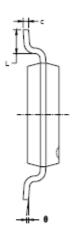
Figure 5. Low Pass Active Filter

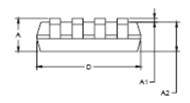
Instrumentation Amplifier

The triple GS321A/358A family can be used to build a three-op-amp instrumentation amplifier as shown in Figure 6. The amplifier in Figure 6 is a high input impedance differential amplifier with gain of R2/R1. The two differential voltage followers assure the high input impedance of the amplifier.



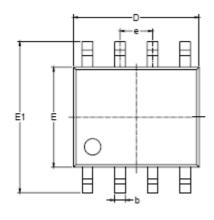

Figure 6. Instrument Amplifier

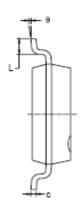


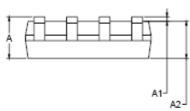


Package Information

MSOP-8

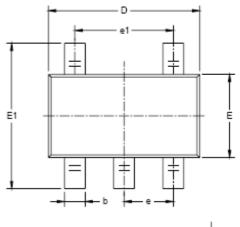


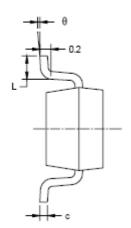


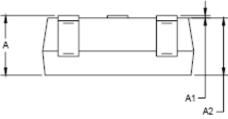


Symbol	Dimen In Milli		Dimensions In Inches		
-	MIN	MAX	MIN	MAX	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
e	0.650	BSC	0.026	BSC	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

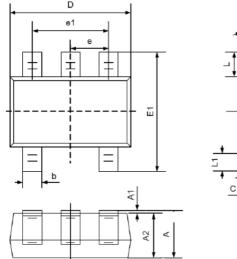
SOP-8

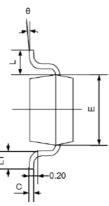





Symbol		nsions imeters	Dimen In Inc		
,	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
e	1.27	1.27 BSC		BSC	
L	0.400	1.270	0.016	0.050	
9	0°	8°	0°	8°	

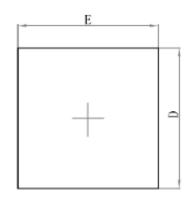
SOT23-5

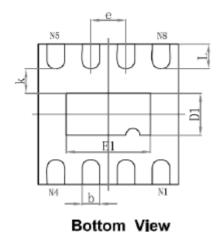




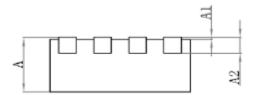
Symbol		nsions Dimen limeters In Inc			
	MIN	MAX	MIN	MAX	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
e	0.950 BSC 0.037 BSC			BSC	
e1	1.900 BSC		0.075	BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

SC70-5





	Dimens	sions	Dimensions In Inches		
Symbol	In Milli	meters			
	Min	Max	Min	Max	
Α	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	0.350	0.006	0.014	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.650T	ΥP	0.026TYP		
e1	1.200	1.400	0.047	0.055	
L	0.525REF		0.021R	EF	
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0° 8°		



DFN-8

Top View

Side View

Symbol	Dimen In Milli	sions meters		Dimensions In Inches		
	Min	Nom	Max	Min	Nom	Max
Α	0.80	0.85	0.9	0.031	0.033	0.035
A1	0.00	0.02	0.05	0.000	0.001	0.002
A2	0.153	0.203	0.253	0.006	0.008	0.010
b	0.18	0.24	0.30	0.007	0.009	0.012
D	1.9	2.0	2.1	0.075	0.079	0.083
Е	1.9	2.0	2.1	0.075	0.079	0.083
D1	0.5	0.6	0.7	0.020	0.024	0.028
E1	1.1	1.2	1.3	0.043	0.047	0.051
е		0.50			0.20	
k	0.2			0.008		
L	0.25	0.35	0.45	0.010	0.014	0.018

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Gainsil manufacturer:

Other Similar products are found below:

430227FB UPC451G2-A UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC258G2-A NCS5651MNTXG

NCV33202DMR2G NJM324E NTE925 5962-9080901MCA* AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E

HA1630S01LPEL-E AZV358MMTR-G1 SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G NTE778S NTE871

NTE924 NTE937 MCP6V16UT-E/OT MCP6V17T-E/MS MCP6V19T-E/ST SCY6358ADR2G NCS20282FCTTAG LM4565FVT-GE2

EL5420CRZ-T7A TSV772IQ2T TSV792IYST NJM2100M-TE1 COS2262MR COS2252MR COS5532SRB COS2272MR LMV358MR

COS6002MR LMV358SR LM358SR RC4580MM/TR HGV8544M/TR HGV8541M/TR HGV8634M/TR HGV8542M/TR

HGV8544MT/TR