

Features

- Internally Frequency Compensated
- Large Signal Voltage Gain: 100dB Typical
- Gain and Phase Match between Amplifiers
- Gain Bandwidth Product (at 10kHz): 5.5MHz
- Pin to Pin Compatible with MC1458

General Description

The GS4558 consists of two high performance operational amplifiers. The IC features high gain, low equivalent input noise voltage, high input resistance, excellent channel separation, wide range of operating voltage and internal frequency compensation. It can work with \pm 18V maximum power supply voltage or single power supply up to 36V.

The GS4558 is available in DIP-8 and SOP-8 packages.

Applications

- Audio AC-3 Decoder System
- Audio Amplifier

Pin Configuration

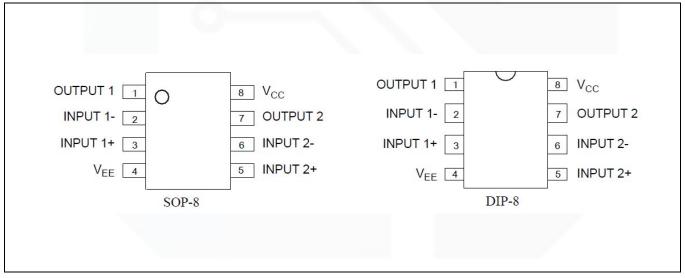


Figure 1. Pin Configuration of GS4558

Functional Block Diagram

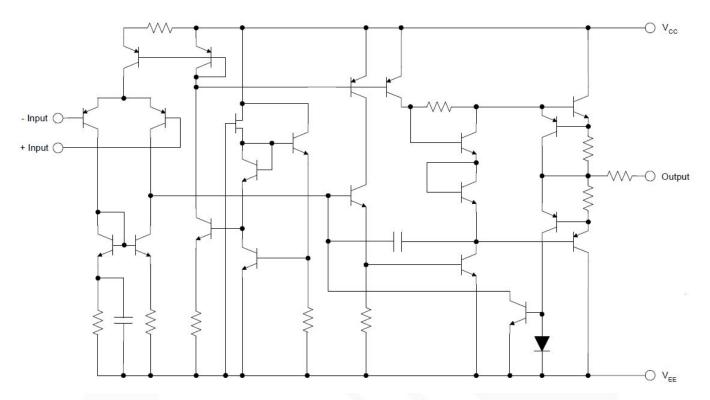


Figure 2. Representative Schematic Diagram of GS4558 (Each Amplifier)

Absolute Maximum Ratings (Note 1)

Parameter Parameter	Symbol	Value		Unit	
Supply Voltage	V_{CC}	+20		V	
Supply Voltage	V_{EE}	-20			
Input Voltage	V_{I}	±15		V	
Differential Input Voltage	V_{ID}	±30		V	
Operating Junction Temperature	T_{J}	150		°C	
Storage Temperature Range	T_{STG}	-65 to 150		°C	
Lead Temperature (Soldering 10s)	$T_{ m L}$	260		°C	
Barrer Bissinstins	D	DIP	800	mW	
Power Dissipation	P_{D}	SOP	500	mW	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

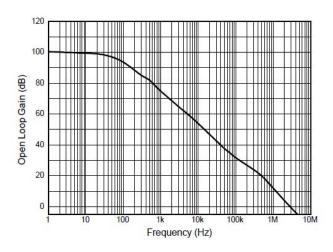
Parameter	Min	Max	Unit
Supply Voltage	±2	±18	V
Operating Temperature Range	-40	85	°C

Package/Ordering Information

MODEL	CHANNEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
GS4558	0.4550 dual	GS4558-SR	SOP-8	Tape and Reel,4000	GS4558
GS4558 dual	GS4558-DR	DIP8	20Tube(1000pcs)	GS4558	

Electrical Characteristics

Operating Conditions: VCC=+15V, VEE=-15V, TA=25 $^{\circ}$ C, unless otherwise specified.


Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Input Offset Voltage	$\rm v_{IO}$			1	5	mV	
Input Offset Current	I _{IO}	V _{CM} =0V		10	100	nA	
Input Bias Current	I_{IB}	V _{CM} =0V		70	400	nA	
Large Signal Voltage Gain	A_{VD}	R_L =2K Ω , V_O =±10V	85	100		dB	
Supply Voltage Rejection Ratio	SVR	$R_S \le 10 K\Omega$	80	100		dB	
Supply Current	I_{CC}	All Amplifiers, No Load		2.5	4.5	mA	
Input Common Mode Voltage Range	V _{ICM}		±12			v	
Common Mode Rejection Ratio	CMRR	$R_S \le 10K\Omega$	70	95		dB	
Output William Coning	37 -	$R_L \ge 10 K\Omega$	±12	±14		v	
Output Voltage Swing	v_0	$R_L \ge 2K\Omega$	±10	±13			
Slew Rate	SR	V_I =±10V, R_L =2K Ω , C_L =100pF, unity gain		1.8		V/µs	
Rise Time	T _R	V_I =±20mV, R_L =2K Ω , C_L =100pF, unity gain		0.3		μs	
Overshoot	K _{OV}	V_I =±20mV, R_L =2K Ω , C_L =100pF, unity gain		15		%	
Input Resistance	R _I			0.5		ΜΩ	
Output Resistance	R _O			45		Ω	
Unity Gain Bandwidth	В	Gain=0dB		2.8		MHz	
Gain Bandwidth Product	GBWP	V_I =±10mV, R_L =2K Ω , C_L =100pF, f=10KHz		5.5		MHz	
Total Harmonic Distortion Plus Noise	THD+N	f=1KHz, A_V =6dB, R_L =10K Ω , V_O =1 V_{RMS} ,		0.002		%	
Equivalent Input Noise Voltage Density	e _N	R _S =100Ω, f=1KHz		10		$\frac{nV}{\sqrt{Hz}}$	
_	I _{SINK}	V-=1V, V+= 0V, V _O =2V		60			
Output Current	I _{SOURCE}	V+=1V, V-= 0V, V _O =2V		35		mA	
Thermal Resistance (Junction to Case)	Δ	DIP-8		55		00.77	
(Junction to Case)	$\theta_{\rm JC}$	SOP-8		81	°C/W		

Typical Performance characteristics

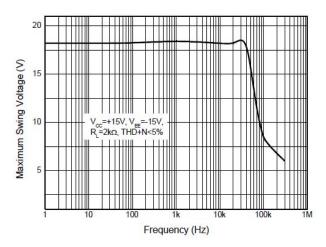


Figure 3. Open Loop Voltage Gain vs. Frequency

Figure 4. Maximum Output Voltage Swing vs. Frequency

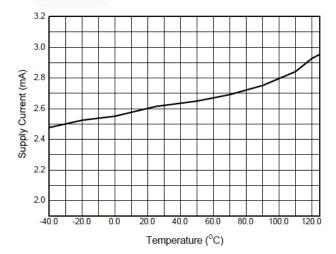
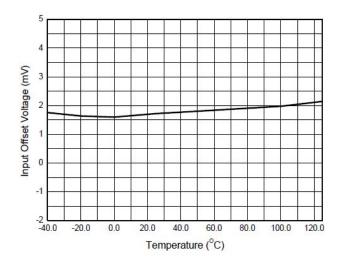



Figure 5. Maximum Output Voltage Swing vs. Load Resistance

Figure 6. Supply Current vs. Temperature

Typical Performance Characteristics (Continued)

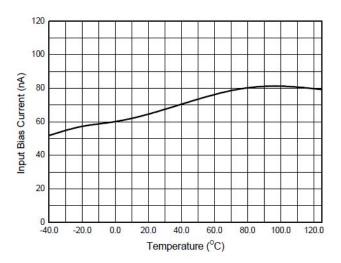
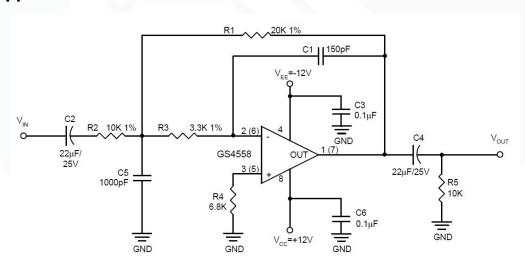
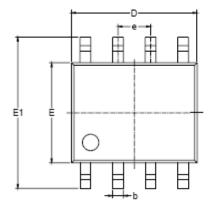
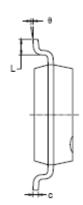


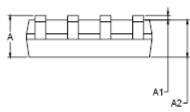
Figure 7. Input Offset Voltage vs. Temperature

Figure 8. Input Bias Current vs. Temperature

Typical Applications

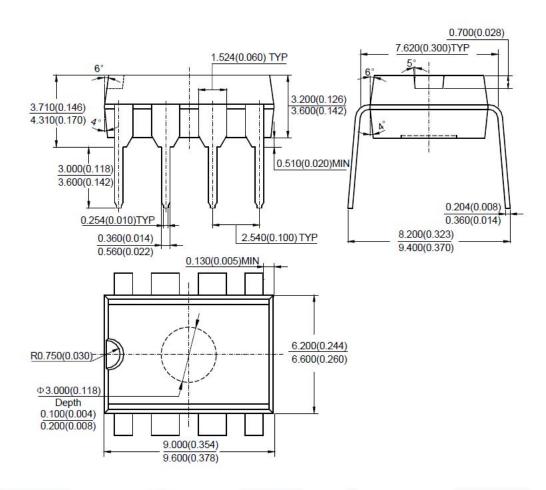




Figure 9. Typical Application of GS4558 in Audio 2nd Order Low Pass Filter (f_O =50.6kHz, Q=0.7015, Input impedance=10K, Gain=6dB, Group delay=4.48 μ s)



Package Information

SOP-8



Symbol	Dimensions In Millimeters		Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
e	1.27 BSC		0.050 BSC		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

DIP-8

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Gainsil manufacturer:

Other Similar products are found below:

430227FB AZV831KTR-G1 UPC451G2-A UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC258G2-A NCS5651MNTXG NCV33202DMR2G NJM324E NTE925 5962-9080901MCA* AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM2902EDR2G NTE778S NTE871 NTE924 NTE937 MCP6V16UT-E/OT MCP6V17T-E/MS MCP6V19T-E/ST SCY6358ADR2G LTC2065IUD#PBF NCS20282FCTTAG LM4565FVT-GE2 EL5420CRZ-T7A TSV791IYLT TSV772IQ2T TLV2772QPWR NJM2100M-TE1 NJM4556AM-TE1 AS324MTR-E1 AS358MMTR-G1 MCP6232T-EMNY MCP662-E/MF TLC081AIP TLC082AIP TLE2074ACDW TLV07IDR TLV2170IDGKT TLV2455IDR TLV2461IDR