

Features

- Single-Supply Operation from +2.1V ~ +5.5V
- Rail-to-Rail Input / Output
- Gain-Bandwidth Product: 350KHz (Typ. @25°C)
- Low Input Bias Current: 20pA (Typ. @25°C)
- Low Offset Voltage: 10uV (Max. @25°C)
- Quiescent Current: 20µA per Amplifier (Typ.)
- Operating Temperature: -40°C ~ +125°C
- Zero Drift: 0.05µV/°C (Max.)

General Description

Embedded RF Anti-EMI Filter

Handheld Test Equipment

Battery-Powered Instrumentation

Small Package:

GS8331 Available in SOT23-5 and SOP-8 Packages GS8332 Available in MSOP-8, SOP-8 and DFN-8 Packages

The GS833X amplifier is single/dual supply, micro-power, zero-drift CMOS operational amplifiers, the amplifiers offer bandwidth of 350 kHz, rail-to-rail inputs and outputs, and single-supply operation from 2.1V to 5.5V. GS833X uses chopper stabilized technique to provide very low offset voltage (less than 10µV maximum) and near zero drift over temperature. Low quiescent supply current of 20µA per amplifier and very low input bias current of 20pA make the devices an ideal choice for low offset, low power consumption and high impedance applications. The GS833X offers excellent CMRR without the crossover associated with traditional complementary input stages. This design results in superior performance for driving analog-to-digital converters (ADCs) without degradation of differential linearity.

The GS8331 is available in SOT23-5 and SOP8 packages. And the GS8332 is available inMSOP8, SOP8 and DFN-8 packages. The extended temperature range of -40°C to +125°C over all supply voltages offers additional design flexibility.

Applications

- Transducer Application
- Temperature Measurements
- Electronics Scales

Pin Configuration

GS8332 GS8331Y GS8331 8 VDD 8 NC OUTA 1 NC 1 5 VDD OUT 1 7 OUTB 7 VDD INA- 2 INA- 2 VSS 2 6 OUT 6 INB-INA+ 3 INA+ 3 4 IN-IN+ 3 VSS 4 VSS 4 5 NC 5 INB+ SOT23-5/SC70-5 MSOP-8/SOP-8 SOP-8 GS8332 8 VDD OUTA 1 7 OUTB INA 2 INA+ 6 3 INB-4 5 INB+ VSS DFN-8

Absolute Maximum Ratings

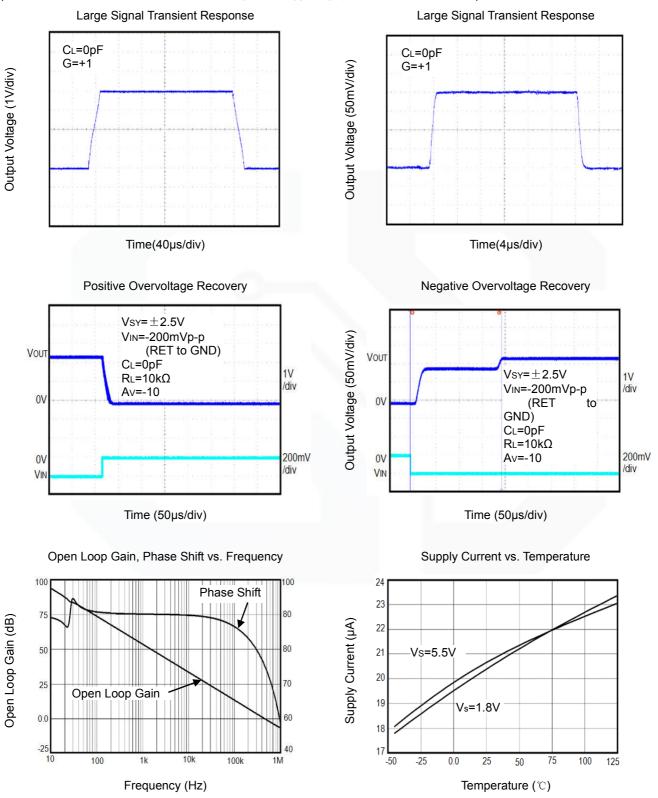
Condition	Min	Max		
Power Supply Voltage (V _{DD} to Vss)	-0.5V	+7.5V		
Analog Input Voltage (IN+ or IN-)	Vss-0.5V	V _{DD} +0.5V		
PDB Input Voltage	Vss-0.5V	+7V		
Operating Temperature Range	-40°C	+125°C		
Junction Temperature	+1	60°C		
Storage Temperature Range	-55°C	+150°C		
Lead Temperature (soldering, 10sec)	+2	+260°C		
Package Thermal Resistance (T₄=+25℃)				
SOP-8, θ _{JA}	ΟΡ-8, θ _{JA} 125°C/W			
MSOP-8, θ _{JA}	216	216°C/W		
SOT23-5, θ _{JA}	190	190°C/W		
ESD Susceptibility				
НВМ	2	2KV		
MM	2	00V		

Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Package/Ordering Information

MODEL	CHANNEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
		GS8331-TR	SOT23-5	Tape and Reel,3000	8331
GS8331	GS8331 Single	GS8331-CR	SC70-5	Tape and Reel,3000	8331
	GS8331Y-SR	SOP-8	Tape and Reel,2500	GS8331Y	
		GS8332-SR	SOP-8	Tape and Reel,2500	GS8332
GS8332 Dual	Dual	GS8332-MR	MSOP-8	Tape and Reel,3000	GS8332
		GS8332-FR	DFN-8	Tape and Reel,3000	GS8332

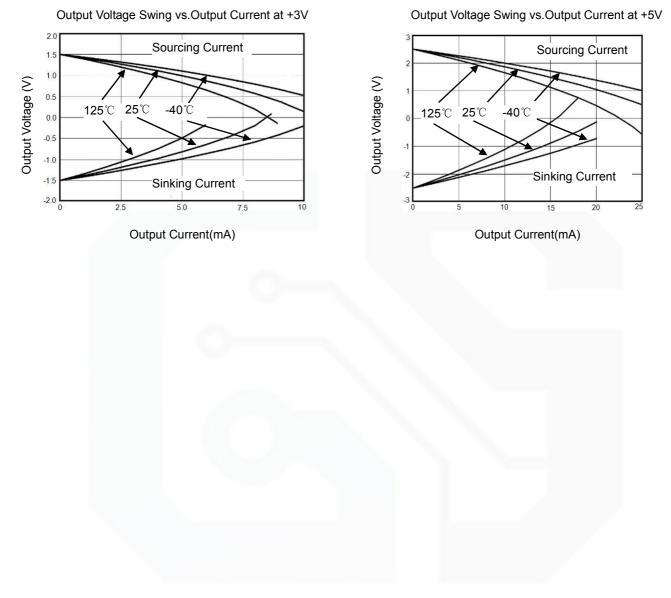
Electrical Characteristics


(At Vs=5V, TA = +25 $^{\circ}$ C, VCM = VS/2, RL = 10K Ω , unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
INPUT CHARACTERISTICS					
Input Offset Voltage (V _{OS})			2	10	μV
Input Bias Current (I _B)			20		pА
Input Offset Current (I _{OS})			10		pА
Common-Mode Rejection Ratio (CMRR)	$V_{CM} = 0V$ to 5V		110		dB
Large Signal Voltage Gain (A _{VO})	R_L = 10k Ω , V_O = 0.3V to 4.7V		145		dB
Input Offset Voltage Drift ($\Delta V_{OS}/\Delta_T$)			50		nV/℃
OUTPUT CHARACTERISTICS					
	$R_L = 100k\Omega$ to - V _S		4.998		V
Output Voltage High (V _{OH})	$R_L = 10k\Omega$ to - V _S		4.994		V
	$R_L = 100k\Omega$ to + V _S		5		mV
Output Voltage Low (V _{OL})	$R_L = 10k\Omega$ to + V _S		20		mV
Short Circuit Limit (I _{SC})	R_L =10 Ω to - V _S		20		mA
Output Current (I _O)			20		mA
POWER SUPPLY					•
Power Supply Rejection Ratio (PSRR)	V _S = 2.5V to 5.5V		115		dB
Quiescent Current (I _Q)	$V_0 = 0V, R_L = 0\Omega$		20		μA
DYNAMIC PERFORMANCE					
Gain-Bandwidth Product (GBP)	G = +100		350		KHz
Slew Rate (SR)	$R_L = 10k\Omega$		0.2		V/µs
NOISE PERFORMANCE					
Voltage Noise (e _n p-p)	0Hz to 10Hz		1.1		$\mu V_{P\text{-}P}$
Voltage Noise Density (e _n)	f = 1kHz		70		nV/\sqrt{Hz}

Typical Performance characteristics

(T_A=+25°C, Vs=5V, R_L=10 k Ω connected to V_S/2 and V_{OUT}= V_S/2, unless otherwise noted.)


GAINSIL

www.gainsil.com

Typical Performance characteristics

(T_A=+25°C, Vs=5V, R_L=10 k Ω connected to V_S/2 and V_{OUT}= V_S/2, unless otherwise noted.)

Application Note

Size

GS833X series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the GS833X series packages save space on printed circuit boards and enable the design of smaller electronic products.

Power Supply Bypassing and Board Layout

GS833X series operates from a single 2.1V to 5.5V supply or dual $\pm 1.05V$ to $\pm 2.75V$ supplies. For best performance, a 0.1μ F ceramic capacitor should be placed close to the V_{DD} pin in single supply operation. For dual supply operation, both V_{DD} and V_{SS} supplies should be bypassed to ground with separate 0.1μ F ceramic capacitors.

Low Supply Current

The low supply current (typical 20uA per channel) of GS833X series will help to maximize battery life. They are ideal for battery powered systems

Operating Voltage

GS833X series operate under wide input supply voltage (2.1V to 5.5V). In addition, all temperature specifications apply from -40 °C to +125 °C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-lon battery lifetime

Rail-to-Rail Input

The input common-mode range of GS833X series extends 100mV beyond the supply rails (V_{SS} -0.1V to V_{DD} +0.1V). This is achieved by using complementary input stage. For normal operation, inputs should be limited to this range.

Rail-to-Rail Output

Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of GS833X series can typically swing to less than 5mV from supply rail in light resistive loads (>100k Ω), and 100mV of supply rail in moderate resistive loads (10k Ω).

Capacitive Load Tolerance

The GS833x family is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create a pole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain. Figure 2. shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.

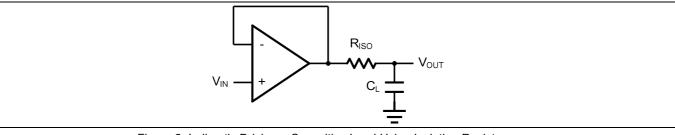


Figure 2. Indirectly Driving a Capacitive Load Using Isolation Resistor

The bigger the R_{ISO} resistor value, the more stable V_{OUT} will be. However, if there is a resistive load R_L in parallel with the capacitive load, a voltage divider (proportional to R_{ISO}/R_L) is formed, this will result in a gain error.

The circuit in Figure 3 is an improvement to the one in Figure 2. R_F provides the DC accuracy by feed-forward the V_{IN} to R_L. C_F

GS8331/32

and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of C_{F} . This in turn will slow down the pulse response.

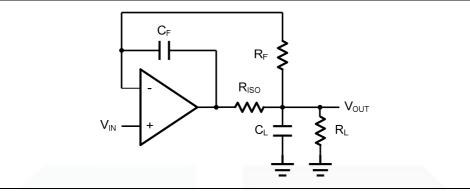


Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy

Typical Application Circuits

Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 4. shown the differential amplifier using GS833X.

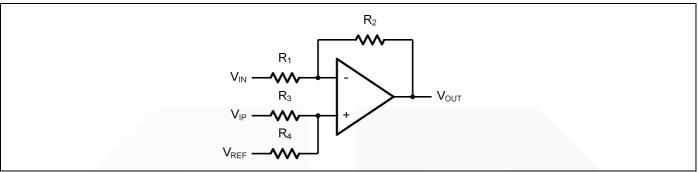


Figure 4. Differential Amplifier

$$V_{\text{OUT}} = \left(\frac{R_1 + R_2}{R_3 + R_4}\right) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + \left(\frac{R_1 + R_2}{R_3 + R_4}\right) \frac{R_3}{R_1} V_{\text{REF}}$$

If the resistor ratios are equal (i.e. $R_1=R_3$ and $R_2=R_4$), then

$$V_{\rm OUT} = \frac{R_2}{R_1} (V_{\rm IP} - V_{\rm IN}) + V_{\rm REF}$$

Low Pass Active Filter

The low pass active filter is shown in Figure 5. The DC gain is defined by $-R_2/R_1$. The filter has a -20dB/decade roll-off after its corner frequency $f_c=1/(2\pi R_3 C_1)$.

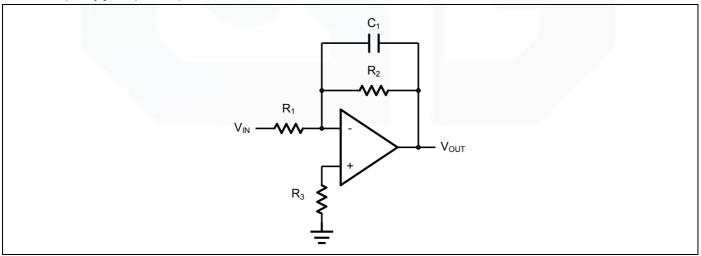
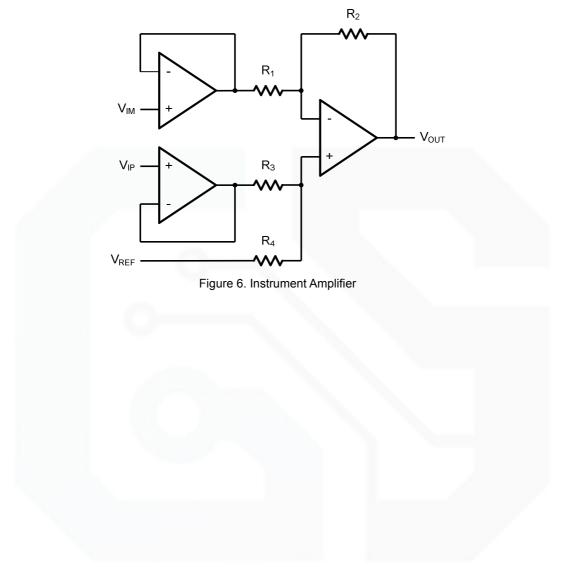
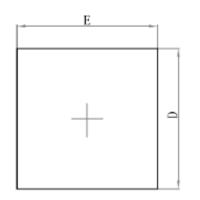


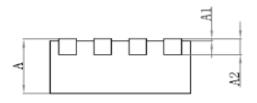
Figure 5. Low Pass Active Filter



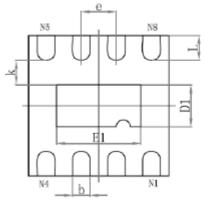
Instrumentation Amplifier

The triple GS833X can be used to build a three-op-amp instrumentation amplifier as shown in Figure 6. The amplifier in Figure 6 is a high input impedance differential amplifier with gain of R_2/R_1 . The two differential voltage followers assure the high input impedance of the amplifier.

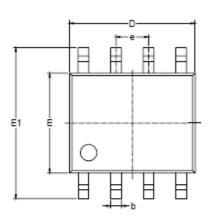


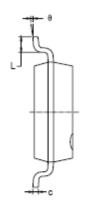


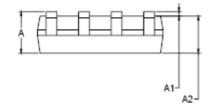
Package Information

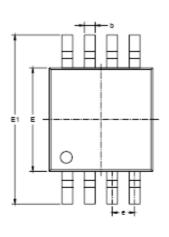

DFN-8

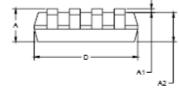
Side View


Bottom View

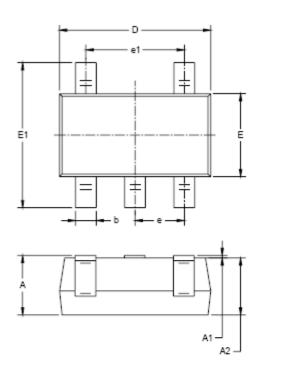

Symbol	Dimensions In Millimeters			Dimensions In Inches		
	Min	Nom	Max	Min	Nom	Max
A	0.80	0.85	0.9	0.031	0.033	0.035
A1	0.00	0.02	0.05	0.000	0.001	0.002
A2	0.153	0.203	0.253	0.006	0.008	0.010
b	0.18	0.24	0.30	0.007	0.009	0.012
D	1.9	2.0	2.1	0.075	0.079	0.083
E	1.9	2.0	2.1	0.075	0.079	0.083
D1	0.5	0.6	0.7	0.020	0.024	0.028
E1	1.1	1.2	1.3	0.043	0.047	0.051
е		0.50			0.20	
k	0.2			0.008		
L	0.25	0.35	0.45	0.010	0.014	0.018

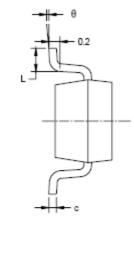



Symbol	Dimensions In Millimeters		Dimensions In Inches	
-,	MIN	MAX	MIN	MAX
A	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
с	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.200
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
e	1.27 BSC		0.050 BSC	
L	0.400	1.270	0.016	0.050
e	0°	8°	0°	8°


GAINSIL

GS8331/32


Symbol	Dimensions In Millimeters		Dimensions In Inches	
-	MIN	MAX	MIN	MAX
А	0.820	1.100	0.032	0.043
A1	0.020	0.150	0.001	0.006
A2	0.750	0.950	0.030	0.037
b	0.250	0.380	0.010	0.015
с	0.090	0.230	0.004	0.009
D	2.900	3.100	0.114	0.122
E	2.900	3.100	0.114	0.122
E1	4.750	5.050	0.187	0.199
e	0.650 BSC		0.026 BSC	
L	0.400	0.800	0.016	0.031
θ	0°	6°	0°	6°



GAINSIL

Symbol	Dimensions In Millimeters		Dimensions In Inches	
-,	MIN	MAX	MIN	MAX
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
с	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	0.950 BSC		BSC
e1	1.900 BSC		0.075 BSC	
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

GAINSIL

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Precision Amplifiers category:

Click to view products by Gainsil manufacturer:

Other Similar products are found below :

OPA4187IRUMT OPA202IDGKT 514327X 561681F 647876R 5962-9080901MCA* MAX410CPA MAX44241AUK+T LT6230IS6#TR OP227GN#PBF LT6020IDD-1#PBF LT6023IDD#PBF LT6013AIDD#PBF LT6237IMS8#PBF LT1124CS8#TR LT1215CS8#TRPBF ADA4622-1ARZ-R7 NCS21871SQ3T2G NCS21871SN2T1G NCV21871SQ3T2G NCV21871SN2T1G AD8538WAUJZ-R7 NCS21912DMR2G MCP6V82-EMS MCP6V92-EMS TLC27L7CP TLE2022MD TLV2473CDR MCP6V34-E/ST MCP6V84-EST MCP6V94-EST LT1014DDWR 5962-89641012A 5962-8859301M2A 5962-89801012A 5962-9452101M2A LMC6064IN LT1013DDR TL034ACDR TLC2201AMDG4 TLC274MDRG4 TLE2021QDRG4Q1 TLE2024BMDWG4 AD8691WAUJZ-R7 AD8629TRZ-EP-R7 AD8604ARQZ TS507IYLT MAX4239ATT+T MAX4238AUT+T MAX4168EPD