

Features

Single-Supply Operation from +1.8V ~ +5.5V

• Rail-to-Rail Input / Output

• Gain-Bandwidth Product: 1.8MHz (Typ@25°C)

Low Input Bias Current: 20pA (Typ@25°C)

Low Offset Voltage: 30µV (Max@25°C)

• Quiescent Current: 180µA per Amplifier (Typ)

• Operating Temperature: -45°C ~ +125°C

Zero Drift: 0.01μV/°C (Typ)

• Embedded RF Anti-EMI Filter

Small Package:

GS8551 Available in SOT23-5 and SOP-8 Packages GS8552 Available in MSOP-8 and SOP-8 Packages GS8554 Available in SOP-14 and TSSOP-14 Packages

General Description

The GS855X amplifier is single/dual/quad supply, micro-power, zero-drift CMOS operational amplifiers, the amplifiers offer bandwidth of 1.8MHz, rail-to-rail inputs and outputs, and single-supply operation from 1.8V to 5.5V. GS855X uses chopper stabilized technique to provide very low offset voltage (less than 30µV maximum) and near zero drift over temperature. Low quiescent supply current of 180µA per amplifier and very low input bias current of 20pA make the devices an ideal choice for low offset, low power consumption and high impedance applications. The GS855X offers excellent CMRR without the crossover associated with traditional complementary input stages. This design results in superior performance for driving analog-to-digital converters (ADCs) without degradation of differential linearity.

The GS8551 is available in SOT23-5 and SOP-8 packages. And the GS8552 is available in MSOP-8 and SOP-8 packages. The GS8554 Quad is available in Green SOP-14 and TSSOP-14 packages. The extended temperature range of -45°C to +125°C over all supply voltages offers additional design flexibility.

Applications

- Transducer Application
- Temperature Measurements
- Electronics Scales

- Handheld Test Equipment
 - Battery-Powered Instrumentation

Pin Configuration

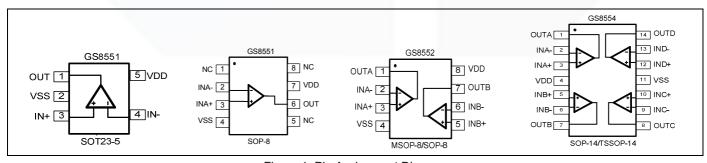


Figure 1. Pin Assignment Diagram

March 2020-REV_V2 1/14

Absolute Maximum Ratings

Condition	Min	Мах		
Power Supply Voltage (V _{DD} to Vss)	-0.5V	+7.5V		
Analog Input Voltage (IN+ or IN-)	Vss-0.5V	V _{DD} +0.5V		
PDB Input Voltage	Vss-0.5V	+7V		
Operating Temperature Range	-45°C	+125°C		
Junction Temperature	+16	0°C		
Storage Temperature Range	-55°C	+150°C		
Lead Temperature (soldering, 10sec)	+26	+260°C		
Package Thermal Resistance (T _A =+25℃)	·			
SOP-8, θ _{JA}	125°	C/W		
MSOP-8, θ _{JA}	216°	C/W		
SOT23-5, θ _{JA} 190°C/W		C/W		
ESD Susceptibility				
НВМ	6K	(V		
MM	400V			

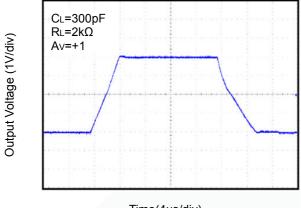
Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

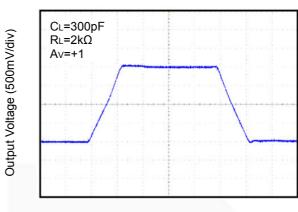
Package/Ordering Information

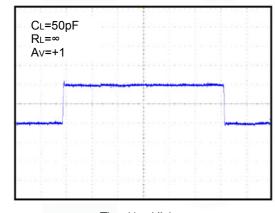
MODEL	CHANNEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
CC0554	Cimala	GS8551-TR	SOT23-5	Tape and Reel,3000	8551
GS8551	GS8551 Single	GS8551-SR	SOP-8	Tape and Reel,4000	GS8551
GS8552		GS8552-SR	SOP-8	Tape and Reel,4000	GS8552
GS8552	Dual	GS8552-MR	MSOP-8	Tape and Reel,3000	GS8552
CCOEEA	000554	GS8554-TR	TSSOP-14	Tape and Reel,3000	GS8554
GS8554	Quad	GS8554-SR	SOP-14	Tape and Reel,2500	GS8554

Electrical Characteristics

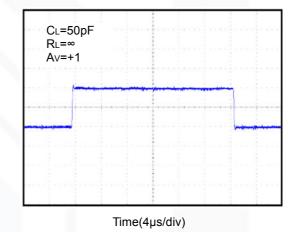
(V_S = +5V, V_{CM} = +2.5V, V_O = +2.5V, T_A = +25 $^{\circ}$ C, unless otherwise noted.)


PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS		<u>.</u>			
Input Offset Voltage (Vos)			1	30	μV
Input Bias Current (I _B)			20		pA
Input Offset Current (I _{OS})			10		pA
Common-Mode Rejection Ratio (CMRR)	V _{CM} = 0V to 5V		110		dB
Large Signal Voltage Gain (A _{VO})	$R_L = 10k\Omega$, $V_O = 0.3V$ to 4.7V		145		dB
Input Offset Voltage Drift ($\Delta V_{OS}/\Delta_T$)			10	50	nV/℃
OUTPUT CHARACTERISTICS					
Outrot Valtaga High (V	$R_L = 100k\Omega$ to - V_S		4.998		V
Output Voltage High (V _{OH})	$R_L = 10k\Omega$ to - V_S		4.994		V
Output Valtage Levy (V)	$R_L = 100k\Omega$ to + V_S		2		mV
Output Voltage Low (V _{OL})	$R_L = 10k\Omega$ to + V_S		5		mV
Short Circuit Limit (I _{SC})	R_L =10 Ω to - V_S		60		mA
Output Current (I _O)			65		mA
POWER SUPPLY					•
Power Supply Rejection Ratio (PSRR)	V _S = 2.5V to 5.5V		115		dB
Quiescent Current (I _Q)	$V_O = 0V$, $R_L = 0\Omega$		180		μΑ
DYNAMIC PERFORMANCE					
Gain-Bandwidth Product (GBP)	G = +100		1.8		MHz
Slew Rate (SR)	$R_L = 10k\Omega$		0.95		V/µs
Overload Recovery Time			0.10		ms
NOISE PERFORMANCE					•
Voltage Noise (e _n p-p)	0Hz to 10Hz		0.3		μV _{P-P}
Voltage Noise Density (e _n)	f = 1kHz		38		nV/\sqrt{Hz}

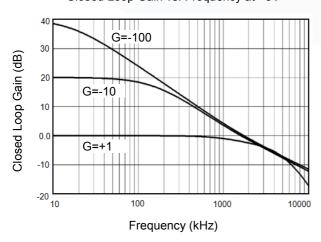

Typical Performance characteristics


Time(4µs/div)

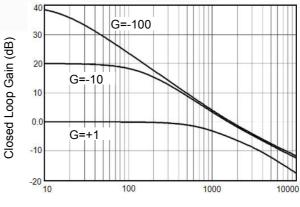
Large Signal Transient Response at +2.5V


Time(2µs/div)

Small Signal Transient Response at +5V


Time(4µs/div)

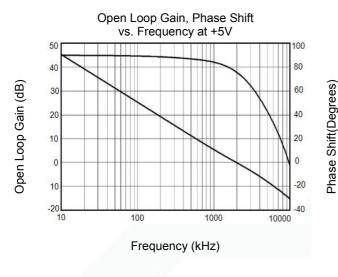
Small Signal Transient Response at +2.5V

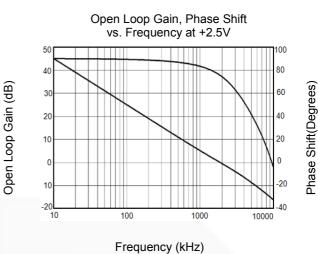


Output Voltage (50mV/div)

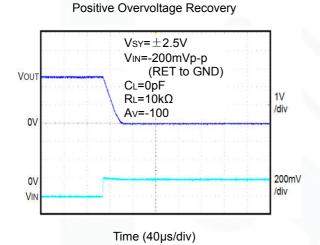
Closed Loop Gain vs. Frequency at +5V

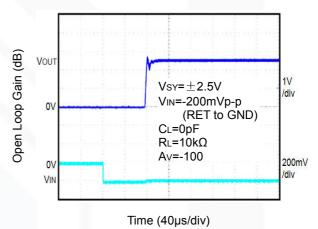
Closed Loop Gain vs. Frequency at +2.5V

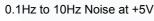


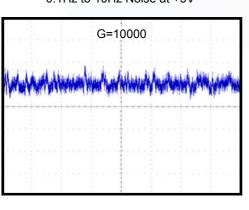

Frequency (kHz)

Output Voltage (50mV/div)

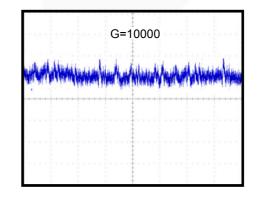



Typical Performance characteristics





Negative Overvoltage Recovery



Time (10s/div)

0.1Hz to 10Hz Noise at +2.5V

Noise (2mv/div)

Time (10s/div)

Noise (2mv/div)

Application Note

Size

GS855X series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the GS855X series packages save space on printed circuit boards and enable the design of smaller electronic products.

Power Supply Bypassing and Board Layout

GS855X series operates from a single 1.8V to 5.5V supply or dual ± 0.9 V to ± 2.75 V supplies. For best performance, a 0.1μ F ceramic capacitor should be placed close to the V_{DD} pin in single supply operation. For dual supply operation, both V_{DD} and V_{SS} supplies should be bypassed to ground with separate 0.1μ F ceramic capacitors.

Low Supply Current

The low supply current (typical 180µA per channel) of GS855X series will help to maximize battery life. They are ideal for battery powered systems.

Operating Voltage

GS855X series operate under wide input supply voltage (1.8V to 5.5V). In addition, all temperature specifications apply from -40 °C to +125 °C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-lon battery lifetime.

Rail-to-Rail Input

The input common-mode range of GS855X series extends 100mV beyond the supply rails (V_{SS} -0.1V to V_{DD} +0.1V). This is achieved by using complementary input stage. For normal operation, inputs should be limited to this range.

Rail-to-Rail Output

Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of GS855X series can typically swing to less than 5mV from supply rail in light resistive loads (>100k Ω), and 60mV of supply rail in moderate resistive loads (10k Ω).

Capacitive Load Tolerance

The GS855x family is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create a pole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain. Figure 2. shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.

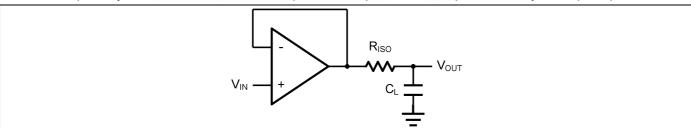


Figure 2. Indirectly Driving a Capacitive Load Using Isolation Resistor

The bigger the R_{ISO} resistor value, the more stable V_{OUT} will be. However, if there is a resistive load R_L in parallel with the capacitive load, a voltage divider (proportional to R_{ISO}/R_L) is formed, this will result in a gain error.

The circuit in Figure 3 is an improvement to the one in Figure 2. R_F provides the DC accuracy by feed-forward the V_{IN} to R_L . C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of C_F . This in turn will slow down the pulse response.

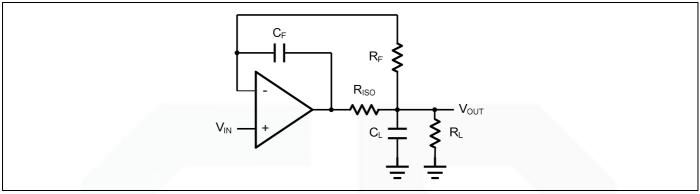


Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy

Typical Application Circuits

Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 4. shown the differential amplifier using GS855X.

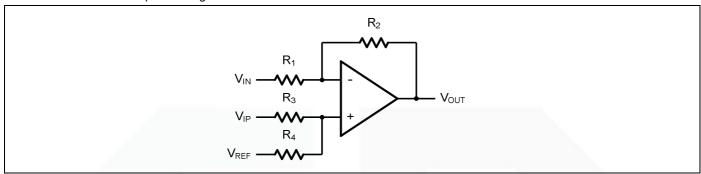


Figure 4. Differential Amplifier

$$V_{\text{OUT}} = (\frac{R_1 + R_2}{R_3 + R_4}) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + (\frac{R_1 + R_2}{R_3 + R_4}) \frac{R_3}{R_1} V_{\text{REF}}$$

If the resistor ratios are equal (i.e. R₁=R₃ and R₂=R₄), then

$$V_{\text{OUT}} = \frac{R_2}{R_1} (V_{\text{IP}} - V_{\text{IN}}) + V_{\text{REF}}$$

Low Pass Active Filter

The low pass active filter is shown in Figure 5. The DC gain is defined by $-R_2/R_1$. The filter has a -20dB/decade roll-off after its corner frequency $f_C=1/(2\pi R_3C_1)$.

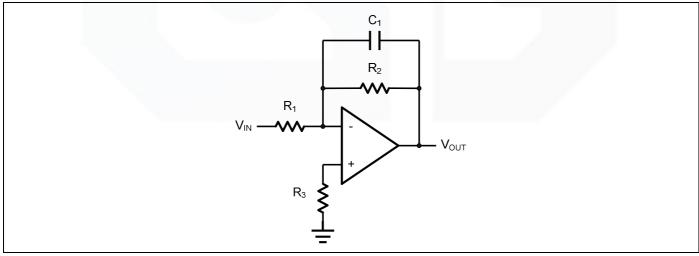
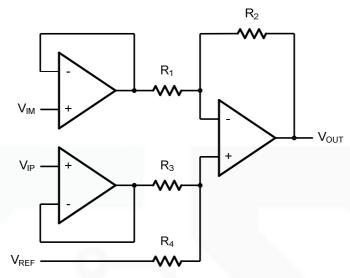
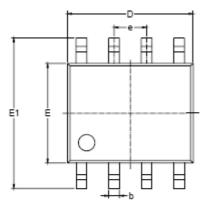
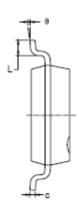


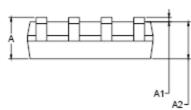
Figure 5. Low Pass Active Filter

Instrumentation Amplifier

The triple GS855X can be used to build a three-op-amp instrumentation amplifier as shown in Figure 6. The amplifier in Figure 6 is a high input impedance differential amplifier with gain of R_2/R_1 . The two differential voltage followers assure the high input impedance of the amplifier.

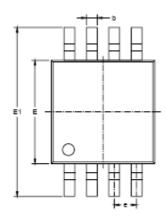



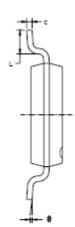

Figure 6. Instrument Amplifier

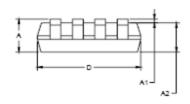


Package Information

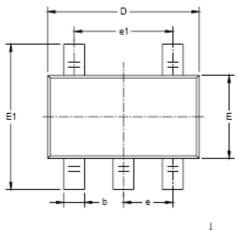
SOP-8

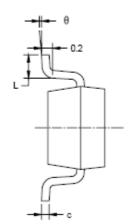


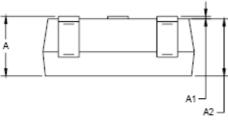



Symbol		nsions imeters	Dimensions In Inches	
•	MIN	MAX	MIN	MAX
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.200
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
e	1.27 BSC		0.050	BSC
L	0.400	1.270	0.016	0.050
9	0°	8°	0°	8°

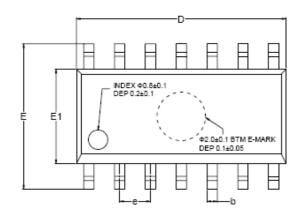
MSOP-8

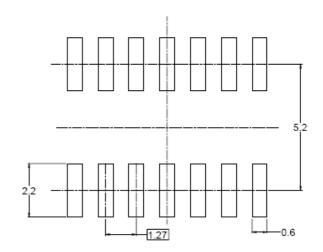





Symbol	Dimer In Milli		Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
e	0.650 BSC		0.026	BSC	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

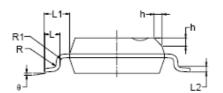
SOT23-5



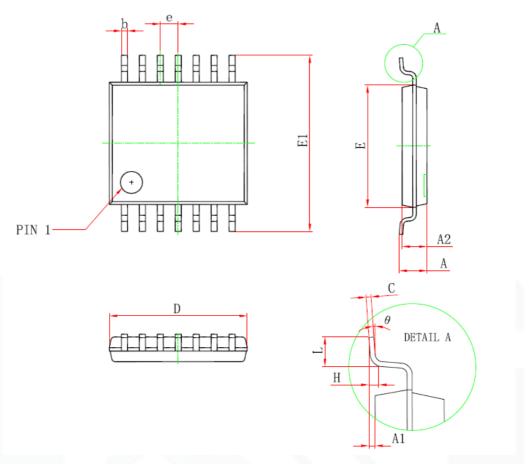


Symbol	Dimensions In Millimeters		Dimensions In Inches		
, , , , , , , , , , , , , , , , , , , ,	MIN	MAX	MIN	MAX	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
e	0.950	0.950 BSC		BSC	
e1	1.900	1.900 BSC		BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	




SOP-14

RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	Dimensions In Millimeters			Dimensions In Inches		
Symbol	MIN	MOD	MAX	MIN	MOD	MAX
Α	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.004		0.010
A2	1.25		1.65	0.049		0.065
A3	0.55		0.75	0.022		0.030
b	0.36		0.49	0.014		0.019
D	8.53		8.73	0.336		0.344
E	5.80		6.20	0.228		0.244
E1	3.80		4.00	0.150		0.157
е		1.27 BSC		0.050 BSC		
L	0.45		0.80	0.018		0.032
L1		1.04 REF			0.040 REF	
L2		0.25 BSC			0.01 BSC	
R	0.07			0.003		
R1	0.07			0.003		
h	0.30		0.50	0.012		0.020
θ	0°		8°	0°		8°

TSSOP-14

Symbol	Dimensions In	Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
D	4. 900	5. 100	0. 193	0.201		
E	4.300	4. 500	0.169	0.177		
b	0.190	0.300	0.007	0.012		
С	0.090	0.200	0.004	0.008		
E1	6. 250	6. 550	0. 246	0.258		
A		1. 200		0.047		
A2	0.800	1.000	0.031	0.039		
A1	0.050	0. 150	0.002	0.006		
e	0.65 (BSC)		0.026(BSC)			
L	0.500	0. 700	0.020	0.028		
Н	0.25(TYP)		0.01(TYP)		
θ	1°	7°	1°	7°		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Precision Amplifiers category:

Click to view products by Gainsil manufacturer:

Other Similar products are found below:

561681F NCS21802DMR2G NCS20166SN2T1G NCV21802DMR2G NCS21802MUTBG OPA209AIDR MCP6V52-E/MS TLC27L7CP
TLV2473CDR LMP2234AMA/NOPB LMP7707MA/NOPB LMP2231AMAE/NOPB LMP2234AMTE/NOPB LMP8672MA/NOPB
LMC6022IM/NOPB LMC6024IM/NOPB LMC6081IMX/NOPB LMP2011MA/NOPB LMP2231AMFE/NOPB LMP2232BMA/NOPB
LMP2234AMAE/NOPB LMP7715MFE/NOPB LMP7717MAE/NOPB LMV2011MA/NOPB LT1013DDR TL034ACDR TLC2201AMDG4
MCP6061T-E/MNY TS507IYLT TS9222IYDT OA2ZHA22Q TLV2472QDRQ1 TLC4502IDR TLC27M2ACP TLC2652Q-8DG4
OPA2107APG4 TL054AIDR AD8619WARZ-R7 TLC272CD LT1672IMS8#PBF LT1996IDD#PBF LT6010CDD#PBF LTC6241IDD#PBF
AD8572ARUZ-REEL LT1077CN8#PBF LTC1050CN8#PBF OP777ARMZ-REEL LT6220IS5#TRMPBF LT6011IDD#PBF
LT1078IN8#PBF