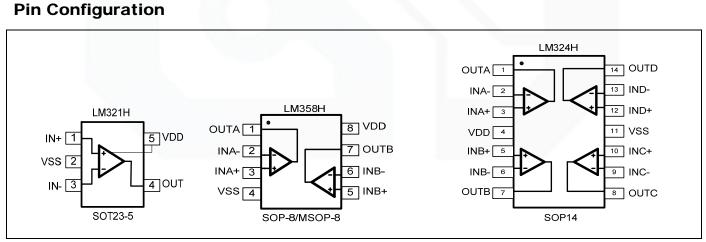


Features

- Single-Supply Operation from +3V ~ +36V
- Dual-Supply Operation from $\pm 1.5V \sim \pm 18V$
- Gain-Bandwidth Product: 1MHz (Typ)
- Low Input Bias Current: 20nA (Typ)
- Low Offset Voltage: 5mV (Max)
- Quiescent Current: 250µA per Amplifier (Typ)
- Input Common Mode Voltage Range Includes
 Ground

- Large Outpu Voltage Swing:0V to Vcc-1.5V
- Operating Temperature: -25°C ~ +85°C
- Small Package:

LM321H Available in SOT23-5 Package LM358H Available in SOP-8 and MSOP-8 Packages LM324H Available in SOP-14 Package


General Description

The LM321H/358H/324H family have a high gain-bandwidth product of 1MHz, a slew rate of 0.2V/µs, and a quiescent current of 250µA/amplifier at 5V. The LM321H/358H/324H family is designed to provide optimal performance in low voltage and low noise systems. The maximum input offset voltage is 5mV for LM321H/358H/324H family. The operating range is from 3V to 36V. The LM321H single is available in Green SOT-23-5 package. The LM358H Dual is available in Green SOP-8 and MSOP-8 packages. The LM324H Quad is available in Green SOP-14 package.

Applications

- Walkie-Talkie
- Battery Management Solution
- Transducer Amplifiers
- Summing Amplifiers

- Multivibrators
- Oscillators
- Switcching Telephone
- Portable Systems

March 2020-REV_V3

Absolute Maximum Ratings

Condition	Symbol	Max
Power Supply Voltage	Vcc	\pm 20V or 40V
Differential input voltage	V _{I(DIFF)}	40V
Input Voltage	VI	-0.3V~40V
Operating Temperature Range	Topr	-25°C ~+85°C
Storage Temperature Range	Tstg	-65°C ~+150°C

Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

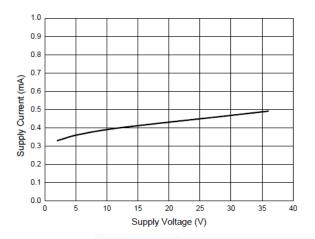
Package/Ordering Information

MODEL	CHANNEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
LM321H	Single	LM321H-TR	SOT23-5	Tape and Reel,3000	LM321
	Dual	LM358H-SR	SOP-8	Tape and Reel,4000	LM358
LM358H	Dual	LM358H-MR	MSOP-8	Tape and Reel,3000	LM358
LM324H	Quad	LM324H-SR	SOP-14	Tape and Reel,2500	LM324

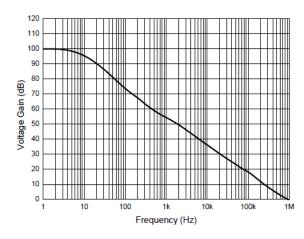
Electrical Characteristics

(At Vs = +15V, $T_A=25^{\circ}C$, unless otherwise noted.)

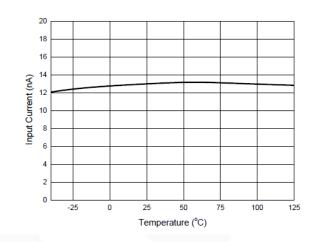
				LM321H/358H/324H			
PARAMETER	SYMBOL	CONDITIONS	ТҮР	MIN/MAX OVER TEMPERATURE			
			+25℃	+25℃	UNITS	MIN/MAX	
INPUT CHARACTERISTICS							
Input Offset Voltage	Vos	$V_{CM} = V_S/2$	0.4	5	mV	MAX	
Input Bias Current	I _B		20		nA	TYP	
Input Offset Current	los		5		nA	TYP	
Common-Mode Voltage Range	V _{CM}	V _S = 5.5V	-0.1 to +4		V	TYP	
Common-Mode Rejection Ratio	CMRR	V_{CM} = 0V to Vs-1.5V	70	60	dB	MIN	
Open-Loop Voltage Gain	A _{OL}	$R_L = 5k\Omega$, $V_O = 1V$ to 11V	100	85	dB	MIN	
Input Offset Voltage Drift	$\Delta V_{OS} / \Delta_T$		7		µV/°C	TYP	
OUTPUT CHARACTERISTICS							
	V _{OH}	$R_L = 2k\Omega$	11		V	MIN	
	V _{OL}	$R_L = 2k\Omega$	5	20	mV	MAX	
Output Voltage Swing from Rail	V _{OH}	$R_L = 10k\Omega$	12	13	V	MIN	
	V _{OL}	R _L = 10kΩ	5	20	mV	MAX	
Output Current	ISOURCE	$P_{\rm r} = 100 \text{ to } V_{\rm r}/2$	40	60	mA	MAX	
Output Current	I _{SINK}	$R_L = 10\Omega$ to $V_S/2$	40	60	mA		
POWER SUPPLY							
Operating Voltage Bange				3	V	MIN	
Operating Voltage Range				36	V	MAX	
Power Supply Rejection Ratio	PSRR	$V_{\rm S}$ = +5V to +36V, $V_{\rm CM}$ = +0.5V	100	70	dB	MIN	
Quiescent Current / Amplifier	Ι _Q	V _S = 36V, RL=∞	0.25	2.0	mA	MAX	
DYNAMIC PERFORMANCE		1	1				
Gain-Bandwidth Product	GBP		1		MHz	TYP	
Slew Rate	SR	G = +1, 2V Output Step	0.2		V/µs	TYP	



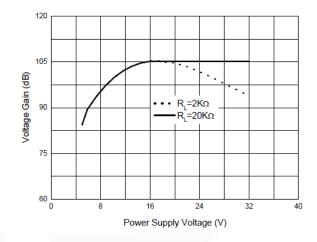
Typical Performance characteristics

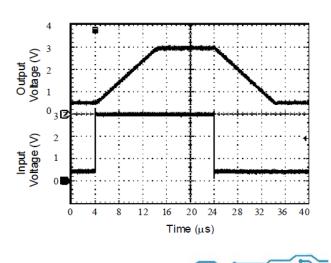

Input Voltage Range

Supply Current



Open Loop Frequency Response

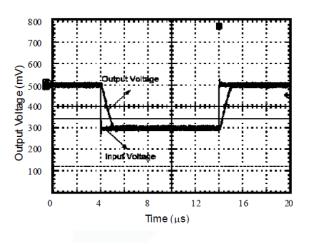




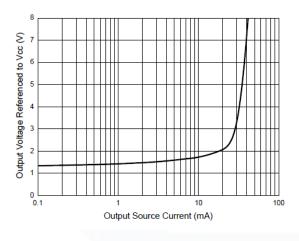
Input Current

Voltage Gain

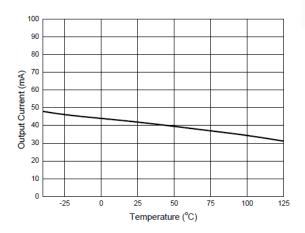
Voltage Follower Pulse Response



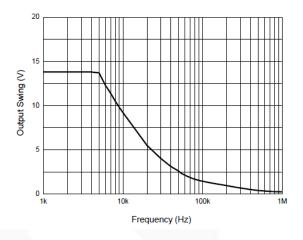
www.gainsil.com 4/13

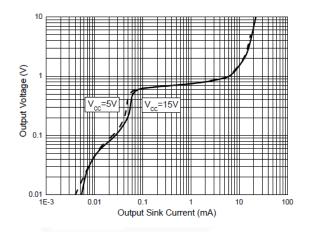


Typical Performance characteristics


Voltage Follower Pulse Response (Small Signal)

Output Characteristics: Current Sourcing


Current Limiting



January 2021-REV_V0

Large Signal Frequency Response

Output Characteristics: Current Sinking

Application Note

Size

LM321H/358H/324H family series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the LM321H/358H/324H family packages save space on printed circuit boards and enable the design of smaller electronic products.

Power Supply Bypassing and Board Layout

LM321H/358H/324H family series operates from a single 3V to 36V supply or dual $\pm 1.5V$ to $\pm 18V$ supplies. For best performance, a 0.1μ F ceramic capacitor should be placed close to the V_{DD} pin in single supply operation. For dual supply operation, both V_{DD} and V_{SS} supplies should be bypassed to ground with separate 0.1μ F ceramic capacitors.

Low Supply Current

The low supply current (typical 250 μ A per channel) of LM321H/358H/324H family will help to maximize battery life.

Operating Voltage

LM321H/358H/324H family operates under wide input supply voltage (3V to 36V). In addition, all temperature specifications apply from -25 °C to +85 °C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-Ion battery lifetime.

Capacitive Load Tolerance

The LM321H/358H/324H family is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create apole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain. Figure 2. shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.

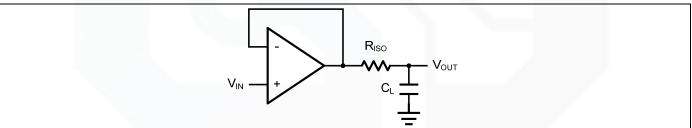


Figure 2. Indirectly Driving a Capacitive Load Using Isolation Resistor

The bigger the R_{ISO} resistor value, the more stable V_{OUT} will be. However, if there is a resistive load R_L in parallel with the capacitive load, a voltage divider (proportional to R_{ISO}/R_L) is formed, this will result in a gain error.

The circuit in Figure 3 is an improvement to the one in Figure 2. R_F provides the DC accuracy by feed-forward the V_{IN} to R_L. C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of C_F . This in turn will slow down the pulse response.

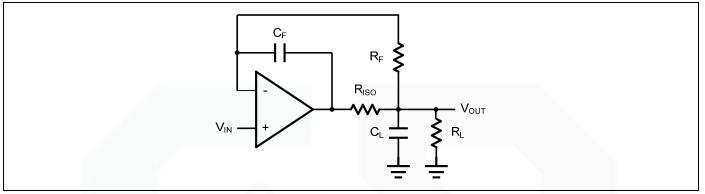


Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy

Typical Application Circuits

Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 4. shown the differential amplifier using LM321H/358H/324H family.

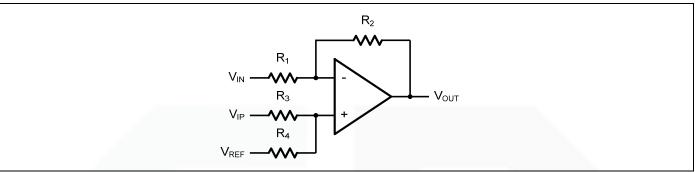


Figure 4. Differential Amplifier

$$V_{\text{OUT}} = \left(\frac{R_{\text{H}} + R_2}{R_{\text{H}} + R_4}\right) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + \left(\frac{R_{\text{H}} + R_2}{R_{\text{H}} + R_4}\right) \frac{R_3}{R_1} V_{\text{REF}}$$

If the resistor ratios are equal (i.e. $R_1=R_3$ and $R_2=R_4$), then

$$V_{\rm OUT} = \frac{R_2}{R_1} (V_{\rm IP} - V_{\rm IN}) + V_{\rm REF}$$

Low Pass Active Filter

The low pass active filter is shown in Figure 5. The DC gain is defined by $-R_2/R_1$. The filter has a -20dB/decade roll-off after its corner frequency $f_c=1/(2\pi R_3C_1)$.

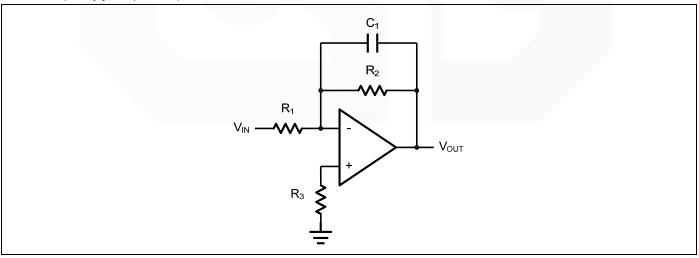
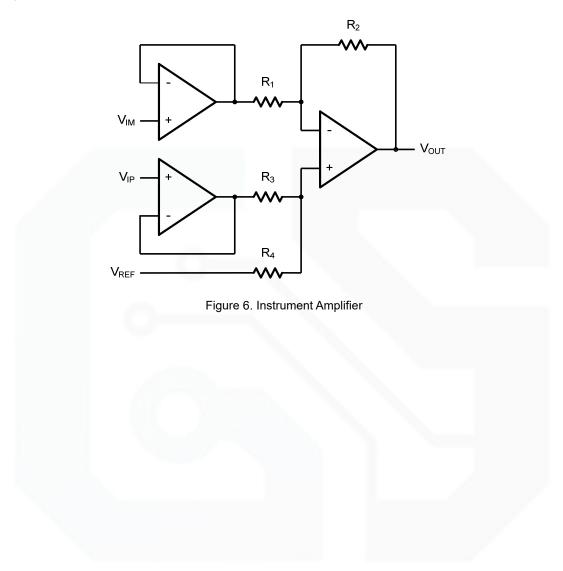
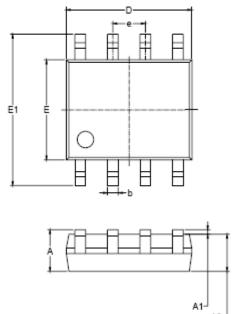


Figure 5. Low Pass Active Filter


January 2021-REV_V0

Instrumentation Amplifier

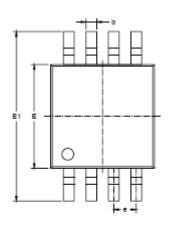
The triple LM321H/358H/324H family can be used to build a three-op-amp instrumentation amplifier as shown in Figure 6. The amplifier in Figure 6 is a high input impedance differential amplifier with gain of R2/R1. The two differential voltage followers assure the high input impedance of the amplifier.

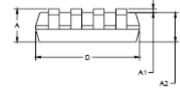


Package Information

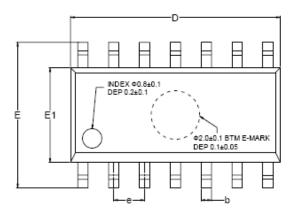
SOP-8

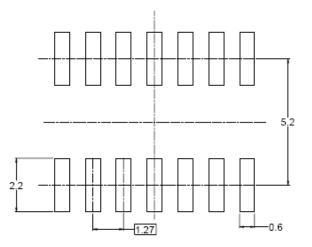
		H	
		A1	」 _{A2} 」

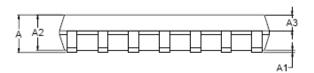

Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
с	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
e	1.27 BSC		0.050	BSC	
L	0.400	1.270	0.016	0.050	
6	0°	8°	0°	8°	

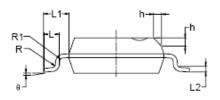


MSOP-8


Symbol		nsions meters	Dimensions In Inches		
,	MIN	MAX	MIN	MAX	
А	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
с	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
e	0.650	0.650 BSC		BSC	
L	0.400	0.800	0.016	0.031	
e	0°	6°	0°	6°	

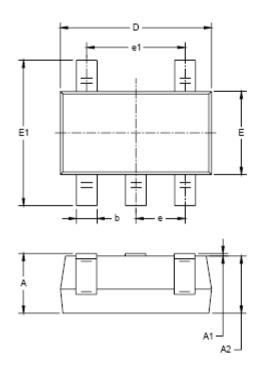


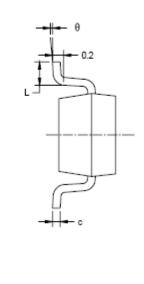

SOP-14



LM321H/358H/324H

RECOMMENDED LAND PATTERN (Unit: mm)


Symphol	Dimens	Dimensions In Millimeters			Dimensions In Inches		
Symbol	MIN	MOD	MAX	MIN	MOD	MAX	
A	1.35		1.75	0.053		0.069	
A1	0.10		0.25	0.004		0.010	
A2	1.25		1.65	0.049		0.065	
A3	0.55		0.75	0.022		0.030	
b	0.36		0.49	0.014		0.019	
D	8.53		8.73	0.336		0.344	
E	5.80		6.20	0.228		0.244	
E1	3.80		4.00	0.150		0.157	
e		1.27 BSC		0.050 BSC			
L	0.45		0.80	0.018		0.032	
L1		1.04 REF			0.040 REF		
L2		0.25 BSC		0.01 BSC			
R	0.07			0.003			
R1	0.07			0.003			
h	0.30		0.50	0.012		0.020	
θ	0°		8°	0°		8°	



SOT23-5

LM321H/358H/324H

		Dimensions In Inches		
MIN	MAX	MIN	MAX	
1.050	1.250	0.041	0.049	
0.000	0.100	0.000	0.004	
1.050	1.150	0.041	0.045	
0.300	0.500	0.012	0.020	
0.100	0.200	0.004	0.008	
2.820	3.020	0.111	0.119	
1.500	1.700	0.059	0.067	
2.650	2.950	0.104	0.116	
0.950	BSC	0.037	BSC	
1.900	BSC	0.075	BSC	
0.300	0.600	0.012	0.024	
0°	8°	0°	8°	
	In Milli MIN 1.050 0.000 1.050 0.300 0.100 2.820 1.500 2.650 0.950 1.900 0.300	1.050 1.250 0.000 0.100 1.050 1.150 0.300 0.500 0.100 0.200 2.820 3.020 1.500 1.700 2.650 2.950 0.950 BSC 1.900 BSC 0.300 0.600	In Millimeters In Inv MIN MAX MIN 1.050 1.250 0.041 0.000 0.100 0.000 1.050 1.150 0.041 0.300 0.500 0.012 0.100 0.200 0.004 2.820 3.020 0.111 1.500 1.700 0.059 2.650 2.950 0.104 0.950 BSC 0.037 1.900 BSC 0.075 0.300 0.600 0.012	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by Gainsil manufacturer:

Other Similar products are found below :

430227FB AZV831KTR-G1 UPC451G2-A UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC258G2-A NCS5651MNTXG NCV33202DMR2G NJM324E NTE925 5962-9080901MCA* AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM2902EDR2G NTE778S NTE871 NTE924 NTE937 MCP6V16UT-E/OT MCP6V17T-E/MS MCP6V19T-E/ST SCY6358ADR2G LTC2065IUD#PBF NCS20282FCTTAG LM4565FVT-GE2 EL5420CRZ-T7A TSV791IYLT TSV772IQ2T TLV2772QPWR NJM2100M-TE1 NJM4556AM-TE1 MCP6487-E/SN MCP6487-E/MS AS324MTR-E1 AS358MMTR-G1 MCP6232T-EMNY MCP662-E/MF TLC081AIP TLC082AIP TLE2074ACDW TLV07IDR TLV2170IDGKT