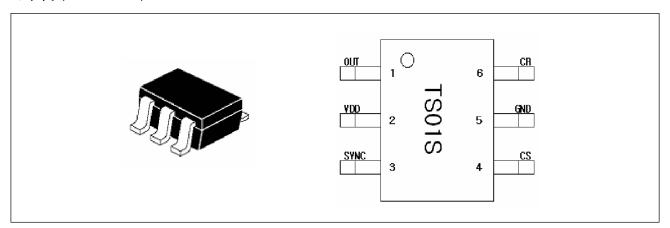


1 通道差分灵敏度校准电容式触摸传感器

主要特点


- 具有差分灵敏度校准的1通道电容式 触摸传感器
- 低功耗
- 灵敏度均匀可调
- 同步功能并行操作
- 无需外部元件即可提供三档灵敏度
- 漏极开路数字输出
- 内部电源重置

- 嵌入式常见和正常噪声消除电路
- 符合 RoHS 标准的 SOT-23-6 封装

主要应用

- 家电
- 移动应用程序 (PMP, 导航, MP3等)
- 薄膜开关更换
- 玩具和互动游戏的人机界面
- 密封的控制面板,键盘

封装(SOT-23-6)

引脚说明(SOT-26)

引脚号	名称	I/0	说明
1	OUTPUT	数字输出	触摸检测输出
2	VDD	电源	电源 (2.5V~5.0V)
			自操作信号输出
3	SYNC	模拟输入/输出	外设操作信号输入
			灵敏度选择输入[注1]
4	CS	模拟输入	电容式传感器输入
5	GND	地	参考地
6	CR	模拟输入	参考电容式传感器输入差分灵
			敏度校准

注 1: 请参考 6.3 章节 6.4 SYNC 的实现

绝对最大额定值

电源电压 5.5 V

任何引脚上的最大电压 VDD + 0.3 V.

焊接温度 260℃ (10S)

注 2: 除非另有说明,否则均在常温下运行。

ESD 和闩锁特性

ESD 特性

模式	极性	最低标准	参考
		8000V	VDD
H. B. M	正/负	8000V	VSS
		8000V	P to P
		500V	VDD
M. M	正/负	500V	VSS
		500V	P to P
C. D. M	正/负	800V	DIRECT

闩锁特性

模式	极性	最低标准	测试步骤
电流测试	正	25 mA $^{\sim}$ 100 mA	25mA
	负	-25 mA $^{\sim}$ -100 mA	ZƏIIIA
电压超过 5.0V	正	1V ~ 7.5V	0. 5V

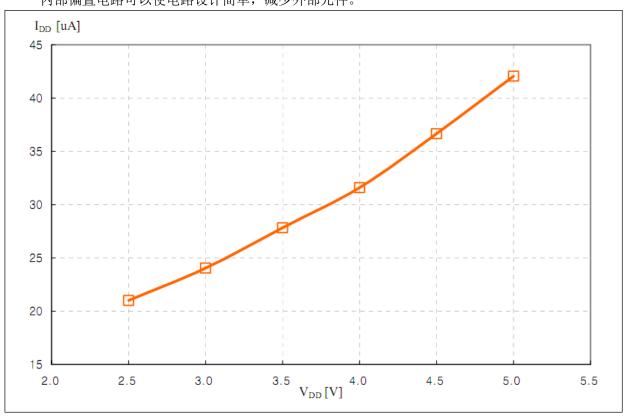
电气特性(VDD = 3.3V (除非另有说明), TA = 25℃)

特点	符号	测试条件	最小值	典型值	最大值	单位
工作供电电压	VDD		2. 5	3.3	5. 0	V
电流消耗	IDD	VDD=3.3V		25	40	uA
		VDD=5. OV		40	70	
输出最大灌电流	Iout	TA = 25℃			4. 0	mA
内部复位标准 VDD电压	VDD_RST	TA = 25℃			0. 3VDD	V
感测输入电容范 围[注 3]	CS			10	100	7. F
参考输入电容范 围[注 4]	CR			12	100	рF

特点	符号	测试条件	最小值	典型值	最大值	单位
感测输入电阻范 围	RS			200	1000	Ω
最小可检测电容 变化	ΔCS	CS=10pF	0. 2			pF
输出阻抗 (漏极	Z0	Δ CS>0. 2pF		12		Ω
开路)		Δ CS<0. 2pF		30M		75
VDD 设置后自校 准时间	TCAL			200		mS
最大电源电压上 升时间	TR_VDD				100	mS
建议的同步电阻 范围	RSYNC		1	2	20	МΩ

注 3: CS 值越低, 灵敏度越高。

使用 3T PC(聚碳酸酯)盖板和 $10 \, \text{mm} \, \text{x} 7 \, \text{mm}$ 触摸模式和中等灵敏度选择时,CS 的推荐值为 $10 \, \text{pF}$ 。 注 4:建议 CR 值尽可能与 CS_TOT 相同,以便进行有效的差分灵敏度校准。

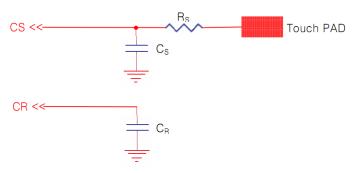

 $CS_TOT = CS + CPARA$ (CPARA 是 CS 引脚的寄生电容)如果使用正确的 CR 电容值,CR 引脚的频率 几乎与 CS 引脚的频率相同。

TS01S 实现

电流消耗

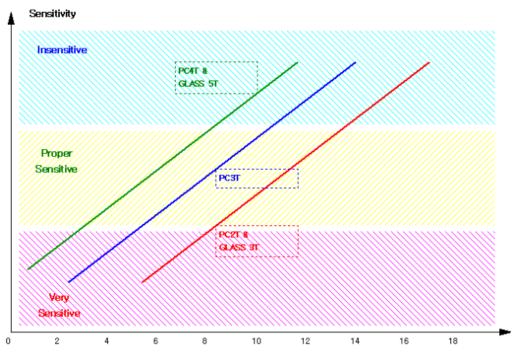
TS01S 使用内部偏置电路,所以内部时钟频率和电流消耗不被调整。 TS01S 的典型电流消耗曲线按照 VDD 电压表示如下。 较高的 VDD 需要更多的电流消耗。

内部偏置电路可以使电路设计简单,减少外部元件。



扬州国芯半导体有限公司

第3页 共8页



CS 和 CR 实现

并联电容器 CS 被添加到 CS 和 CR 到 CR 以调整良好的灵敏度。敏感度的主要因素是 CS。当使用较小的 CS 值时,灵敏度会提高。(参考下面的灵敏度示例图)对于有效的差分灵敏度校准,CR 值应该与总 CS 电容(CS_TOT)几乎相同。总 CS 电容由为 CS 模式(CPARA)的最佳灵敏度和寄生电容设置的 CS 组成。如果使用正常的触摸模式大小,CS 模式的寄生电容约为 2pF。但是在使用较大触摸模式的情况下,CPARA 比正常值大。

RS 是串行连接电阻,以避免外部浪涌和 ESD 造成的故障。 (可能是可选的。)RS 建议从 $200\,\Omega$ 到 $1k\,\Omega$ 。 触摸 PAD 的大小和形状可能会影响灵敏度。当 PAD 的尺寸大约是第一节的一半时(大约 $10\,\,\mathrm{mm}\,\mathrm{x}7\,\,\mathrm{mm}$),灵敏度将是最佳的。建议将 CS 连接到触控板的连线尽量短,以防止连线造成异常的触控侦测。

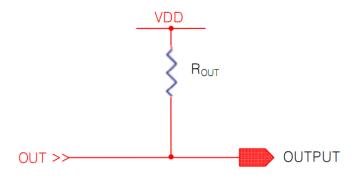
TS01S 的灵敏度示例图(选择正常灵敏度选择时)

SYNC 实现

由于此引脚具有 SYNC 功能,从两个 TS01S 到另外十个 TS01S (或其他 TS 系列触摸传感器)可同时在

一个应用上工作。 SYNC 脉冲可防止两个以上的感应信号相互干扰。 在不可用的时间段内,SYNC 输入变高,内部时钟暂停。 RSYNC 是 SYNC 引脚的下拉电阻。 RSYNC 的值太大会导致 SYNC 脉冲下降延迟,而 RSYNC 的值太小会导致上升延迟。 RSYNC 的典型值是 $2M\Omega$ 。

当 SYNC 如上图所示执行时, TS01S 具有高灵敏度(在 SYNC 和 GND 之间连接 RSYNC)。

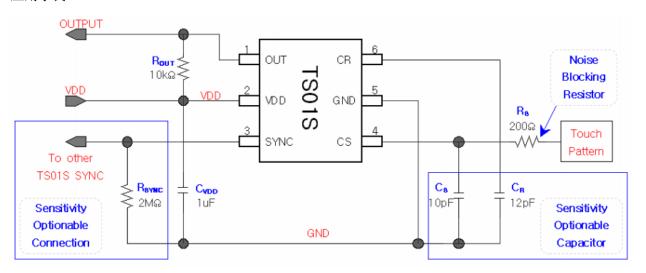

灵敏度选择的 SYNC 实现

TS01S 的 SYNC 引脚的另一个功能是灵敏度的选择,无需任何额外的外部元件。 通知灵敏度选择的 SYNC 如下图所示。

SYNC 连接	使用 RSYNC 连接	连接到 VDD	连接到 GND
灵敏度	高	中	低

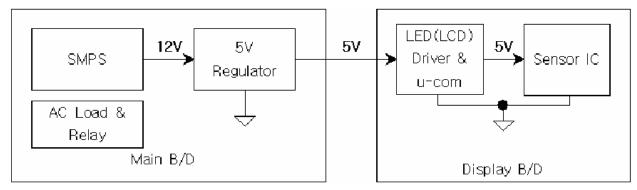
输出实现

OUT 是一个漏极开路结构。 出于这个原因,需要在 OUT 和 VDD 或另一个较低电压节点之间连接上拉电阻 ROUT。 当 ROUT 连接到高于 VDD 的高电压节点时,输出电流通过保护二极管到 VDD,并可能发生异常操作。


最大输出灌电流为 4mA,因此必须使用几 $k\Omega$ 作为 ROUT。 通常使用 $10k\Omega$ 作为 ROUT。 正常情况下,OUT 为高,在 CS 上检测到触摸时,该值为低。

内部复位操作

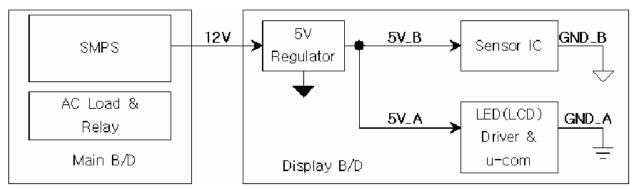
推荐的电路图


1应用示例

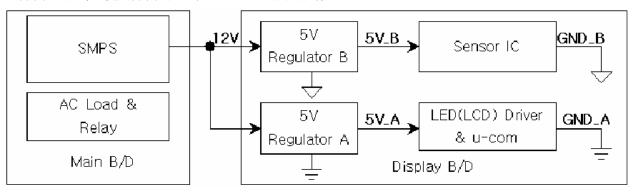
- ●电容和电阻可能连接到 CS (引脚 4), 以获得稳定的灵敏度。
- ●连接到 CR 引脚 (CR) 的电容值应与总 CS 电容 (包括寄生电容) 几乎相同,以实现有效的差分灵敏度校准。
- ●内部复位电路对 TS01S 进行复位。 VDD 电压上升时间应小于 100msec, 以保证正常工作。
- ●灵敏度可以通过连接 SYNC 引脚进行调整。 (请参阅第 6.4 章)
- ●由于具有 SYNC 功能,从两个 TS01S 到另外十个 TS01S (或其他 TS 系列触摸传感器)可以同时在一个应用程序上工作。(请参阅第 6.3 章)
- ●TS01S OUT 端口具有开漏结构。因此上图中应该需要上拉电阻。
- ●VDD 周期性电压波动超过 50mV 或低于 10 kHz 的纹波频率会引起错误的灵敏度校准。为防止上述问题,触摸电路的电源线(VDD, GND)应与其他电路分开。特别是 LED 驱动电源线或数字开关电路电源线一定要处理与触摸电路分离。
- ●CS 布线应该尽可能短,线的宽度应该在 0.25 毫米左右。
- ●CS 布线应由底部金属(触摸 PAD 的相对金属)形成。
- ●VDD 和 GND 之间的电容是必须的。应尽可能靠近 TS01S 放置。
- ●PCB 的空白区域必须填充 GND,以增强 GND 版图,并防止外部噪声干扰传感频率。

2 示例 - 电源线路分路架构

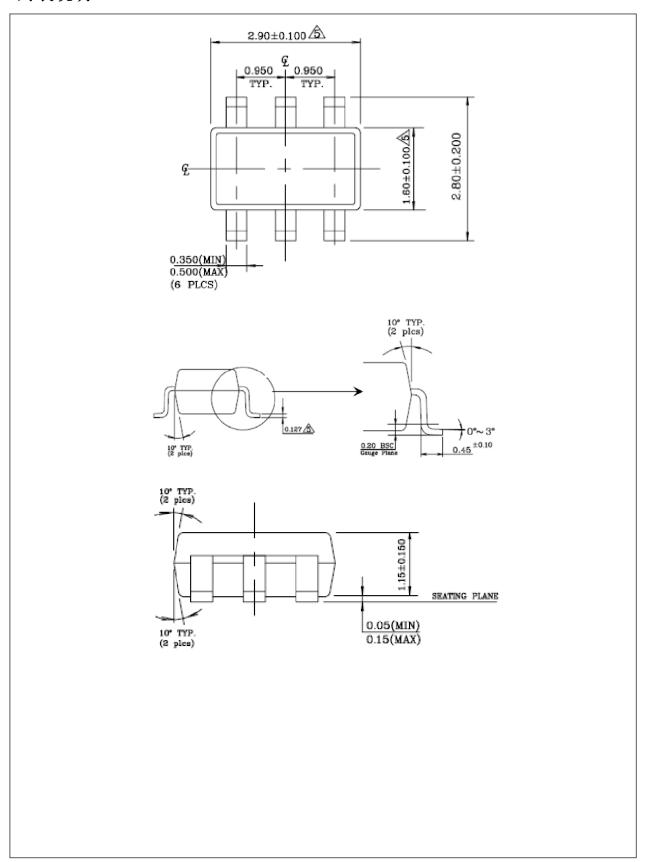
A. 不拆分电源线(坏电源线设计)



交流负载或继电器产生的噪声可以通过 VDD 电源线加载。


主板与显示板连接线过长时,可能会出现较大的电感,并且 VDD(LED)显示驱动器会产生电压纹波。

B. 分离电源线(使用一个 5V 稳压器) - 建议使用



C. 分离电源线(使用分离的 5V 稳压器) - 强烈推荐

封装说明

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Capacitive Touch Sensors category:

Click to view products by Gcore manufacturer:

Other Similar products are found below:

AT42QT1012-MAH FK 8-1 SMBTASK3KIT6 TTP233H-HA6 8022W TC233A AW96103CSR AI32C XW01-SOP8 AF2041 XW01
TS01S CR12CN04DPO-E2 CR30SCF10ATO CR30SCF10DPO BCS M30BBI2-PSC15D-S04K LDS6124NQGI FDC1004DGSR
FDC1004DGST CR18SCF05DPO CR30CN15DPO-E2 CDWM3020ZPM D11SN6FP OTBA5L OTBVR81LQD PBCL22T QS18VN6DB
MTCH6301-I/ML CAP1133-1-AIA-TR STMPE16M31QTR STMPE16M31PXQTR LC717A00AR-NH AT42QT1070-MMH AT42QT1070SSU AT42QT1011-TSHR AT42QT1011-MAHR AT42QT1110-AUR BU21077MUV-E2 TL50HRQP AT42QT2120-SUR AT42QT1012MAHR BRT-TVHG-8X10P BCS M12B4I1-PSC40D-EP02 CFAK 12P1103 CFAK 12P1140/L CFAK 18P1100 CFAK 18P1200 CFAK
30P1100 CFAM 12P1600 CFAM 18P1600