

IGBT/SiC Diode Co-pack

Features

- Optimal Punch Through (OPT) technology
- SiC freewheeling diode
- · Positive temperature coefficient for easy paralleling
- Extremely fast switching speeds
- Temperature independent switching behavior of SiC rectifier
- · Best RBSOA/SCSOA capability in the industry
- · High junction temperature
- · Industry standard packaging

GB100XCP12-227

V_{CES}	=	1200 V
I _{CM}	=	100 A
V _{CE(SAT)}	=	1.9 V

Package

• RoHS Compliant

SOT - 227

Advantages

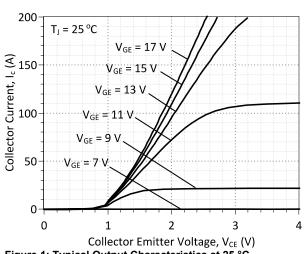
- Industry's highest switching speeds
- High temperature operation
- Improved circuit efficiency
- · Low switching losses

Applications

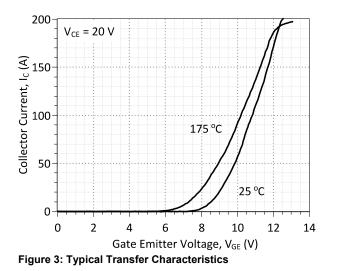
- Solar Inverters
- Aerospace Actuators
- Server Power Supplies
- Resonant Inverters > 100 kHz
- Inductive Heating
- Electronic Welders

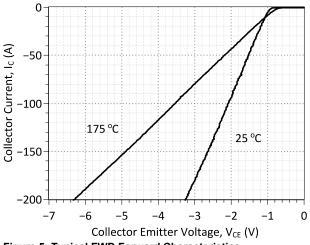
Maximum Ratings at T_j = 175 °C, unless otherwise specified

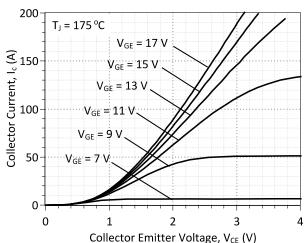
Parameter	Symbol	Conditions		Values		Unit
IGBT						
Collector-Emitter Voltage	V _{CES}			1200		V
DC-Collector Current	lc	T _C ≤ 130 °C		100		А
Peak Collector Current	I _{CM}	Limited by T _{vjmax}		200		А
Gate Emitter Peak Voltage	V _{GES}			± 20		V
IGBT Short Circuit SOA	t _{psc}	V_{CC} = 900 V, $V_{CEM} \le 1200$ V V _{GE} ≤ 15 V, Tv _j ≤ 125 °C	10			μs
Operating Temperature	T _{vi}		-	40 to +17	5	°C
Storage Temperature	T _{stg}		-	40 to +17	5	°C
Isolation Voltage	VISOL	I _{SOL} < 1 mA, 50/60 Hz, t = 1 s		3000		V
Free-wheeling Silicon Carbide diode						
DC-Forward Current	I _F	T _C ≤ 130 °C		100		А
Non Repetitive Peak Forward Current	I _{FM}	T _C = 25 °C, t _P = 10 μs		tbd		А
Surge Non Repetitive Forward Current	I _{F,SM}	t_P = 10 ms, half sine, T_c = 25 °C		tbd		А
Thermal Characteristics						
Thermal resistance, junction - case	R _{thJC}	IGBT	0.08		°C/W	
Thermal resistance, junction - case	R _{thJC}	SiC Diode		0.53		°C/W
Marchana in al Durana attira			Values			
Mechanical Properties			min.	typ.	max.	
Mounting Torque	M _d			1.5		Nm
Terminal Connection Torque			1.3		1.5	Nm
Weight				29		g
Case Color				Black	•	
Dimensions			38	3 x 25.4 x	12	mm

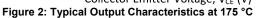


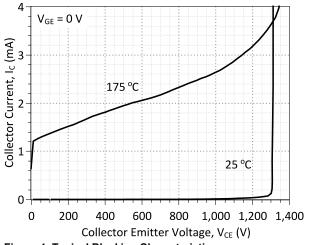
Electrical Characteristics at T_j = 175 °C, unless otherwise specified

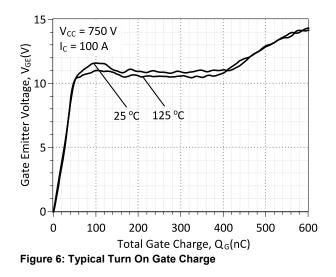

Parameter	Symbol	Conditions	Values			Unit	
Falailletei	Symbol	Conditions	min.	typ.	max.	Unit	
IGBT							
Gate Threshold Voltage	$V_{GE(th)}$	V _{GE} = V _{CE} , I _C = 4 mA, T _i = 25 °C	5	6.2	7	V	
Collector-Emitter Leakage Current	I _{CES,25}	V _{GE} = 0 V, V _{CE} = V _{CES} , T _j = 25 °C		0.10	1	mA	
	I _{CES,175}	V _{GE} = 0 V, V _{CE} = V _{CES} , T _j = 175 °C		3.15		mA	
Gate-Leakage Current	I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V, T _j = 175 °C	-400		400	nA	
Collector-Emitter Threshold Voltage	V _{CE(TO)}	T _j = 25°C		1.1		V	
Collector Emitter Slope Registeres	R _{CE,25}	V _{GE} = 15 V, T _j = 25 °C		7.9		mΩ	
Collector-Emitter Slope Resistance	R _{CE,175}	V _{GE} = 15 V, T _j = 175 °C		11.4		mΩ	
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _C = 100 A, V _{GE} = 15 V, T _i = 25 °C (175 °C)		1.9 (2.2)		V	
nput Capacitance	C _{ies}			8.55		nF	
Output Capacitance	C _{oes}	V _{GE} = 0 V, V _{CE} = 25 V, f = 1 MHz, T _i = 150 °C		1.39		nF	
Reverse Transfer Capacitance	C _{res}	1 – 1 Win2, 1j – 130 C		0.25		nF	
nternal Gate Resistance	R _{Gint}			2		Ω	
Gate Charge	Q_{G}	V _{CC} = 750 V, I _C = 100 A, V _{GE} = -815 V, T _i = 25 °C (125 °C)		900 (900)		nC	
Module Lead Resistance	R _{mod}	T _c = 25 °C (175 °C)		tbd		mΩ	
Reverse Bias Safe Operating Area	RBSOA	T _j =175 °C, R _g =56Ω, V _{CC} =1200 V, V _{GE} =15 V		150		А	
Short Circuit Current	I _{sc}	$T_i = 175 \text{ °C}, R_g = 56\Omega, V_{CC} = 900 \text{ V},$		470		А	
Short Circuit Duration	t _{sc}	V _{GE} = ±15 V			10	μs	
Rise Time	tr			254		ns	
Fall Time	t _f	V _{CC} = 800 V, I _C = 100 A,		153		ns	
Turn On Delay Time	t _{d(on)}	$R_{gon} = R_{goff} = 10 \Omega,$		244		ns	
Turn Off Delay Time	t _{d(off)}	$V_{GE(on)}$ = 15 V, $V_{GE(off)}$ = -8 V,		488		ns	
Turn-On Energy Loss Per Pulse	E _{on}	L _s = 0.8 μH, Τ _j = 25 °C		14.2		mJ	
Turn-Off Energy Loss Per Pulse	E _{off}			15.7		mJ	
Rise Time	tr			211		ns	
Fall Time	t _f	V _{cc} = 800 V, I _c = 100 A,		172		ns	
Turn On Delay Time	t _{d(on)}	$R_{aon} = R_{aoff} = 10 \Omega,$		240		ns	
Turn Off Delay Time	t _{d(off)}	_{VGE(on)} = 15 V, V _{GE(off)} = -8 V,		636		ns	
Turn-On Energy Loss Per Pulse	Eon	L _s = 0.8 μH, T _j = 175 °C		11.1		mJ	
Turn-Off Energy Loss Per Pulse	E _{off}			21.8		mJ	

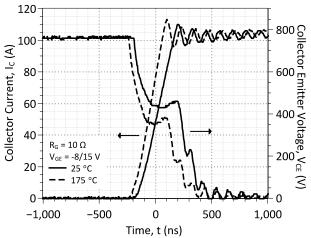

Forward Voltage	V_{F}	I _F = 100 A, V _{GE} = 0 V, T _j = 25 °C (175 °C)	2.08 (3.5)	V
Threshold Voltage at Diode	V _{D(TO)}	T _j = 25 °C	0.8	V
Peak Reverse Recovery Current	l _{rrm}	I _F = 100 A, V _{GE} = 0 V, V _R = 800 V,	10	А
Reverse Recovery Time	t _{rr}	-dI _F /dt = 625 A/µs, T _j = 175 °C	100	ns
Rise Time	t _r	V _{CC} = 800 V, I _C = 100 A,	148	ns
Fall Time	t _f	$\begin{array}{c} {\rm R}_{\rm GC} = 500 \ {\rm V}, \ {\rm R}_{\rm C} = 100 \ {\rm \Omega}, \\ {\rm R}_{\rm gon} = {\rm R}_{\rm goff} = 10 \ {\rm \Omega}, \\ {\rm V}_{\rm GE(on)} = 15 \ {\rm V}, \ {\rm V}_{\rm GE(off)} = -8 \ {\rm V}, \\ {\rm L}_{\rm S} = 0.8 \ {\rm \mu H}, \ {\rm T}_{\rm J} = 25 \ {\rm ^{\circ}C} \end{array}$	336	ns
Turn-On Energy Loss Per Pulse	Eon		218	μJ
Turn-Off Energy Loss Per Pulse	E _{off}		113	μJ
Reverse Recovery Charge	Qrr		730	nC
Rise Time	tr	$V_{CC} = 800 \text{ V}, \text{ I}_{C} = 100 \text{ A}, \\ \text{R}_{gon} = \text{R}_{goff} = 10 \Omega, \\ \text{V}_{GE(on)} = 15 \text{ V}, \text{ V}_{GE(off)} = -8 \text{ V}, \\ \text{L}_{S} = 0.8 \mu\text{H}, \text{T} = 175 ^{\circ}\text{C}$	178	ns
Fall Time	t _f		268	ns
Turn-On Energy Loss Per Pulse	Eon		23	μJ
Turn-Off Energy Loss Per Pulse	E _{off}		334	μJ
Reverse Recovery Charge	Qrr		480	nC











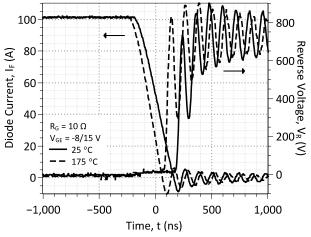
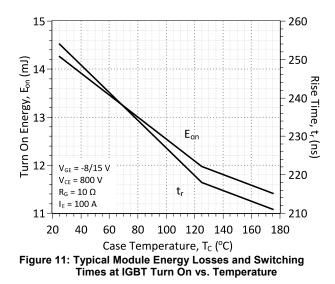



Figure 9: Typical Hard-Switched Free-wheeling SiC Diode Turn Off Waveforms

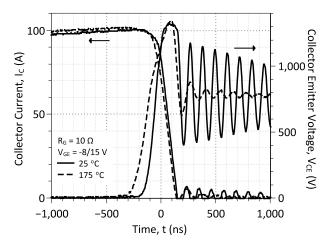
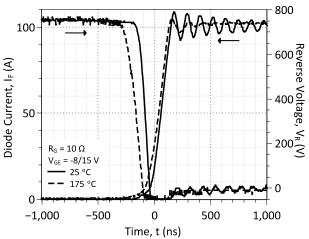
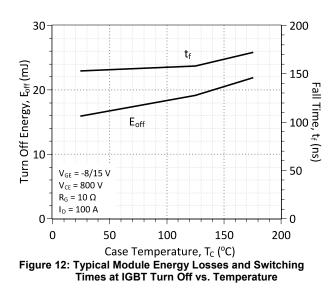
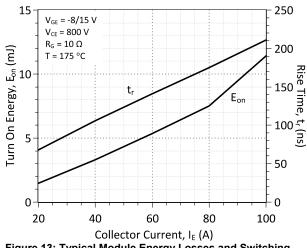
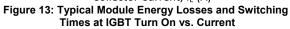
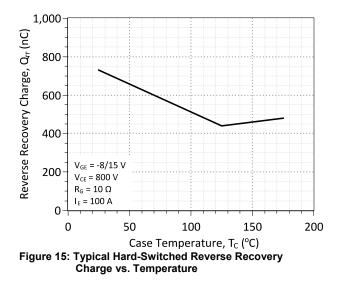
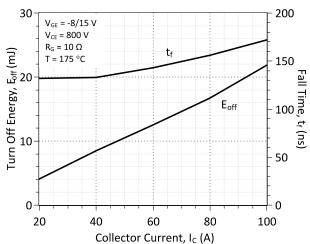


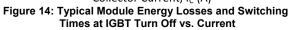
Figure 8: Typical Hard-Switched IGBT Turn Off Waveforms

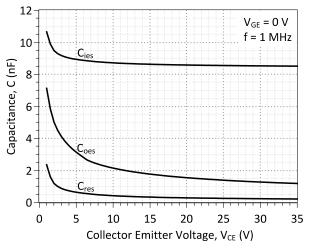




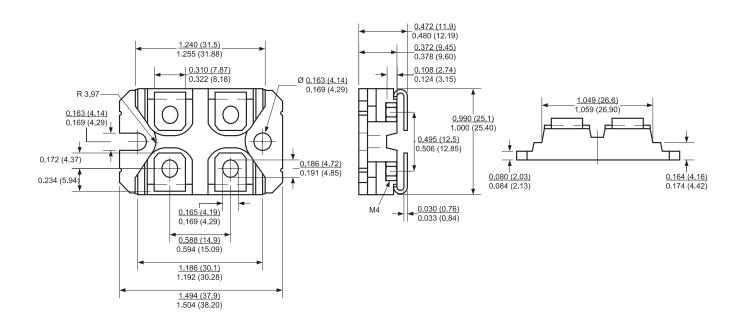

Figure 10: Typical Hard-Switched Free-wheeling SiC Diode Turn On Waveforms






GB100XCP12-227




Figure 16: Typical C-V Characteristics

Package Dimensions:

SOT-227

PACKAGE OUTLINE

NOTE

1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.

2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS

Revision History						
Date	Revision	Comments	Supersedes			
2013/02/08	2	Updated Electrical Characteristics				
2012/07/30	1	Second generation release	GA100XCP12-227			
2011/01/06	0	Initial release				

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Modules category:

Click to view products by GeneSiC Semiconductor manufacturer:

Other Similar products are found below :

 F3L400R07ME4_B22
 F4-50R07W2H3_B51
 FB15R06W1E3
 FB20R06W1E3_B11
 FD1000R33HE3-K
 FD400R33KF2C-K

 FD401R17KF6C_B2
 FD-DF80R12W1H3_B52
 FF200R06YE3
 FF300R12KE4_E
 FF450R12ME4P
 FF600R12IP4V
 FP10R06W1E3_B11

 FP20R06W1E3
 FP50R12KT3
 FP75R07N2E4_B11
 FS10R12YE3
 FS150R07PE4
 FS150R12PT4
 FS200R12KT4R
 FS50R07N2E4_B11

 FZ1000R33HE3
 FZ1800R17KF4
 DD250S65K3
 DF1000R17IE4
 DF1000R17IE4D_B2
 DF1400R12IP4D
 DF200R12PT4_B6

 DF400R07PE4R_B6
 BSM75GB120DN2_E3223c-Se
 F3L300R12ME4_B22
 F3L75R07W2E3_B11
 F4-50R12KS4_B11

 F475R07W1H3B11ABOMA1
 FD1400R12IP4D
 FD200R12PT4_B6
 FD800R33KF2C-K
 FF1200R17KP4_B2
 FF300R17KE3_S4

 FF300R17ME4_B11
 FF401R17KF6C_B2
 FF600R12IE4
 FF650R17IE4D_B2
 FF900R12IP4D
 STGIF7CH60TS-L

 FP50R07N2E4_B11
 FS100R07PE4
 FS150R07N3E4_B11
 FS150R17N3E4