Silicon Carbide Schottky Diode

V _{RRM} =	1200 V
IF(T _c = 117°C) =	200 A *
Qc =	1068 nC *

Features

- Low V_F for High Temperature Operation
- Enhanced Surge and Avalanche Robustness
- Superior Figure of Merit Q_C/I_F
- Low Thermal Resistance
- Low Reverse Leakage Current
- Temperature Independent Fast Switching
- Positive Temperature Coefficient of V_{F}
- High dV/dt Ruggedness

SOT-227

Advantages

- Improved System Efficiency
- High System Reliability
- Optimal Price Performance
- Reduced Cooling Requirements
- Increased System Power Density
- Zero Reverse Recovery Current
- Easy to Parallel without Thermal Runaway
- Enables Extremely Fast Switching

Applications

Package

- EV Fast Chargers
- Solar Inverters
- Train Auxiliary Power Supplies
- High frequency Converters
- Motor Drives
- Induction Heating and Welding
- Uninterruptible Power Supply (UPS)
- Pulsed Power

Absolute Maximum Ratings (At T_c = 25°C Unless Otherwise Stated)

Parameter	Symbol	Conditions	Values	Unit	Note
Repetitive Peak Reverse Voltage (Per Leg)	V _{RRM}		1200	V	
		T _C = 75°C, D = 1	139 / 278		
Continuous Forward Current (Per Leg / Per Device)	IF	I _F T _C = 100°C, D = 1 1 [°]		А	Fig. 4
		T _C = 117°C, D = 1	100 / 200		
Non-Repetitive Peak Forward Surge Current, Half Sine	l	T _C = 25°C, t _P = 10 ms	1000	٨	
Wave (Per Leg)	IF,SM	T _C = 150°C, t _P = 10 ms	800	A	
Repetitive Peak Forward Surge Current, Half Sine Wave	1	T _C = 25°C, t _P = 10 ms	600	٨	
(Per Leg)	IF,RM	T _C = 150°C, t _P = 10 ms	420	A	
Non-Repetitive Peak Forward Surge Current (Per Leg)	I _{F,MAX}	T _C = 25°C, t _P = 10 μs	5000	А	
i ² t Value (Per Leg)	∫i²dt	T _C = 25°C, t _P = 10 ms	5000	A ² s	
Non-Repetitive Avalanche Energy (Per Leg)	E _{AS}	L = 0.4 mH, I _{AS} = 100 A	1797	mJ	
Diode Ruggedness (Per Leg)	dV/dt	$V_{R} = 0 \sim 960 V$	200	V/ns	
Power Dissipation (Per Leg / Per Device)	Ртот	T _C = 25°C	493 / 986	W	Fig. 3
Operating and Storage Temperature	Tj, Tstg		-55 to 175	°C	

* Per Device

Rev 21/Mar

Electrical Characteristics (Per Leg)									
Darameter	Symbol	Conditions -		Values			11	Nete	
Falalletel	Symbol			Min.	Тур.	Max.	UIIII	Note	
Diada Farward Valtaga	V-	I _F = 100 A, T		1.5	1.8	V	Fig. 1		
	۷F	I _F = 100 A, T _j		1.9					
Boverse Current	١.,	V _R = 1200 V,		8	40	μA	Fig. 2		
	IK	V _R = 1200 V, 1		108					
Total Canacitive Charge	0.		V _R = 400 V		368		nC	Fig. 7	
	QC	I _F ≤ I _{F,MAX}	V _R = 800 V		534				
Switching Time	ts	dI _F /dt = 200 A/µs	V _R = 400 V		~ 10		ne		
			< 10			115			
Total Capacitance	С	V _R = 1 V, f = 1MHz			6092		ъĘ	Fig. 6	
		V _R = 800 V, f		356		μ	i iy. 0		

Thermal/Package Characteristics

Dovomotov	Cumbel	Oanditions	Values			11	Note
Paralleler	Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
Thermal Resistance, Junction - Case (Per Leg)	RthJC			0.3		°C/W	Fig. 9
Weight	WT			28.0		g	
Mounting Torque	T _M	Screws to Heatsink			1.5	Nm	
Terminal Connection Torque	Tc	M4 Screws			1.3	Nm	
Isolation Voltage(PMS)	Vice	t = 1s (50/60 Hz)		3000	V		
Isolation voltage(RMS)	VISO	t = 60s (50/60 Hz)		2500			
Croopage Distance on Surface	d _{Ctt}	Terminal to Terminal		10.5		mm	
	dCtb	Terminal to Backside		8.5		111111	
Striking Distance Through Air	d _{Stt}	Terminal to Terminal		3.2		mm	
	d _{Stb}	Terminal to Backside		6.8			

Rev 21/Mar

Figure 10: Forward Curve Model (Per Leg)

 $I_F = f(V_F, T_j)$

Forward Curve Model Equation:

 $I_F = (V_F - V_{BI})/R_{DIFF} (A)$

Built-In Voltage (V_{BI}):

$$V_{BI}(T_j) = m \times T_j + n (V)$$

m = -0.00123 (V/°C)

n = 0.995 (V)

Differential Resistance (RDIFF):

 $R_{DIFF}(T_j) = a \times T_j^2 + b \times T_j + c (\Omega)$ a = 1.19e-07 (\Omega/\circsccccc) b = 1.69e-05 (\Omega/\circsccc) c = 0.00502 (\Omega)

Forward Power Loss Equation:

 $P_{LOSS} = V_{BI}(T_j) \times I_{AVG} + R_{DIFF}(T_j) \times I_{RMS}^2$

Package Dimensions

SOT-227 Package Outline

NOTE

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS.

Compliance

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS 2), as adopted by EU member states on January 2, 2013 and amended on March 31, 2015 by EU Directive 2015/863. RoHS Declarations for this product can be obtained from your GeneSiC representative.

REACH Compliance

REACH substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a GeneSiC representative to insure you get the most up-to-date REACH SVHC Declaration. REACH banned substance information (REACH Article 67) is also available upon request.

Disclaimer

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice. GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

Related Links

SPICE Models:	https://www.genesicsemi.com/sic-schottky-mps/GB2X100MPS12-227/GB2X100MPS12-227_SPICE.zip
 PLECS Models: 	https://www.genesicsemi.com/sic-schottky-mps/GB2X100MPS12-227/GB2X100MPS12-227_PLECS.zip
CAD Models:	https://www.genesicsemi.com/sic-schottky-mps/GB2X100MPS12-227/GB2X100MPS12-227_3D.zip
• Evaluation Boards:	https://www.genesicsemi.com/technical-support
 Reliability: 	https://www.genesicsemi.com/reliability
 Compliance: 	https://www.genesicsemi.com/compliance
• Quality Manual:	https://www.genesicsemi.com/quality

Revision History

- Rev 21/Mar: Updated with most recent data
- Supersedes: Rev 20/Apr, Rev 20/Aug

www.genesicsemi.com/sic-schottky-mps/

Rev 21/Mar Copyright© 2021 GeneSiC Semiconductor Inc. All Rights Reserved. Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155, Dulles, VA 20166; USA Page 7 of 7

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by GeneSiC Semiconductor manufacturer:

Other Similar products are found below :

<u>M252511FV</u> <u>DD260N12K-A</u>	DD380N16A	DD89N1600K-	A APT2X21D	C60J APT58M	80J B522F-2-Y	EC MSTC90-	<u>16</u> <u>25.163.0653.1</u>
25.163.2453.0 25.163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1	25.330.1653.1
25.330.4753.1 25.330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	<u>T483C</u> <u>T484C</u>	<u>T485F</u> <u>T485H</u>
<u>T512F-YEB</u> <u>T513F</u> <u>T514F</u>	<u> T612FSE</u>	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1	25.330.0953.1
25.332.4353.1 25.350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0	25.602.4053.0
25.640.5053.0							