Silicon Carbide Schottky Diode

Features

- Low V_{F} for High Temperature Operation
- Enhanced Surge and Avalanche Robustness
- Superior Figure of Merit Q_{c} / I_{F}
- Low Thermal Resistance
- Low Reverse Leakage Current
- Temperature Independent Fast Switching
- Positive Temperature Coefficient of V_{F}
- High dV/dt Ruggedness

Package

$\mathrm{V}_{\mathrm{RRM}}$	$=1200 \mathrm{~V}$
$\mathrm{I}_{\mathrm{F}\left(\mathrm{T}_{\mathrm{C}}=127^{\circ} \mathrm{C}\right)}$	$=100 \mathrm{~A}^{*}$
QC_{C}	$=534 \mathrm{nC}^{*}$

SOT-227

Advantages

- Improved System Efficiency
- High System Reliability
- Optimal Price Performance
- Reduced Cooling Requirements
- Increased System Power Density
- Zero Reverse Recovery Current
- Easy to Parallel without Thermal Runaway
- Enables Extremely Fast Switching

Absolute Maximum Ratings (At $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Unless Otherwise Stated)

Parameter	Symbol	Conditions	Values	Unit	Note
Repetitive Peak Reverse Voltage (Per Leg)	VRRM		1200	V	
Continuous Forward Current (Per Leg / Per Device)	If	$\begin{gathered} \mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}, \mathrm{D}=1 \\ \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}, \mathrm{D}=1 \\ \mathrm{~T}_{\mathrm{C}}=127^{\circ} \mathrm{C}, \mathrm{D}=1 \end{gathered}$	$\begin{aligned} & 78 / 156 \\ & 66 / 132 \\ & 50 / 100 \end{aligned}$	A	Fig. 4
Non-Repetitive Peak Forward Surge Current, Half Sine Wave (Per Leg)	IF,SM	$\begin{gathered} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{P}}=10 \mathrm{~ms} \\ \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{P}}=10 \mathrm{~ms} \end{gathered}$	$\begin{aligned} & 500 \\ & 400 \end{aligned}$	A	
Repetitive Peak Forward Surge Current, Half Sine Wave (Per Leg)	$I_{\text {F,RM }}$	$\begin{gathered} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{tp}=10 \mathrm{~ms} \\ \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}, \mathrm{tp}=10 \mathrm{~ms} \end{gathered}$	$\begin{aligned} & 300 \\ & 210 \end{aligned}$	A	
Non-Repetitive Peak Forward Surge Current (Per Leg)	$I_{\text {F,MAX }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$	2500	A	
i2t Value (Per Leg)	$\mathrm{j}^{2} \mathrm{dt}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{tp}=10 \mathrm{~ms}$	1250	$A^{2} \mathrm{~S}$	
Non-Repetitive Avalanche Energy (Per Leg)	EAS	$\mathrm{L}=0.7 \mathrm{mH}, \mathrm{I}_{\text {AS }}=50 \mathrm{~A}$	899	mJ	
Diode Ruggedness (Per Leg)	dV/dt	$\mathrm{V}_{\mathrm{R}}=0 \sim 960 \mathrm{~V}$	200	V/ns	
Power Dissipation (Per Leg / Per Device)	Ртот	TC $=25^{\circ} \mathrm{C}$	$300 / 600$	W	Fig. 3
Operating and Storage Temperature	$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$		-55 to 175	${ }^{\circ} \mathrm{C}$	

[^0]Electrical Characteristics (Per Leg)

Parameter	Symbol	Conditions		Values			Unit	Note
				Min.	Typ.	Max.		
Diode Forward Voltage	$V_{\text {F }}$	$\begin{aligned} & I_{F}=50 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=50 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=175^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 1.9 \end{aligned}$	1.8	V	Fig. 1
Reverse Current	IR	$\mathrm{V}_{\mathrm{R}}=1200 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=175^{\circ} \mathrm{C}$			$\begin{gathered} 4 \\ 54 \end{gathered}$	20	$\mu \mathrm{A}$	Fig. 2
Total Capacitive Charge	Qc	$\begin{gathered} \mathrm{I}_{\mathrm{F}} \leq \mathrm{I}_{\mathrm{F}, \mathrm{MAX}} \\ \mathrm{~d}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{S} \end{gathered}$	$\begin{aligned} & V_{R}=400 \mathrm{~V} \\ & V_{R}=800 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 184 \\ & 267 \end{aligned}$		nC	Fig. 7
Switching Time	ts		$\begin{aligned} & V_{R}=400 \mathrm{~V} \\ & V_{R}=800 \mathrm{~V} \end{aligned}$		< 10		ns	
Total Capacitance	C	$\begin{gathered} V_{R}=1 \mathrm{~V}, \mathrm{f} \\ V_{R}=800 \mathrm{~V}, \end{gathered}$	$\begin{aligned} & 1 \mathrm{MHz} \\ & 1 \mathrm{MHz} \end{aligned}$		$\begin{gathered} 3046 \\ 178 \end{gathered}$		pF	Fig. 6

Thermal/Package Characteristics

Parameter	Symbol	Conditions	Values			Unit	Note
			Min.	Typ.	Max.		
Thermal Resistance, Junction - Case (Per Leg)	Rthuc			0.5		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Fig. 9
Weight	$\mathrm{W}_{\text {T }}$			28.0		g	
Mounting Torque	TM	Screws to Heatsink			1.5	Nm	
Terminal Connection Torque	Tc	M4 Screws			1.3	Nm	
Isolation Voltage(RMS)	Viso	$\begin{gathered} \mathrm{t}=1 \mathrm{~s}(50 / 60 \mathrm{~Hz}) \\ \mathrm{t}=60 \mathrm{~s}(50 / 60 \mathrm{~Hz}) \end{gathered}$		$\begin{aligned} & 3000 \\ & 2500 \end{aligned}$		V	
Creepage Distance on Surface	$\begin{aligned} & \text { dctt } \\ & \text { dctb } \end{aligned}$	Terminal to Terminal Terminal to Backside		$\begin{gathered} 10.5 \\ 8.5 \\ \hline \end{gathered}$		mm	
Striking Distance Through Air	$\begin{aligned} & \mathrm{dstt} \\ & \mathrm{~d}_{\mathrm{stt}} \end{aligned}$	Terminal to Terminal Terminal to Backside		$\begin{aligned} & 3.2 \\ & 6.8 \end{aligned}$		mm	

Figure 1: Typical Forward Characteristics (Per Leg)

Figure 3: Power Derating Curves (Per Leg)

Ртот $=\mathrm{f}\left(\mathrm{T}_{\mathrm{C}}\right) ; \mathrm{T}_{\mathrm{j}}=175^{\circ} \mathrm{C}$

Figure 2: Typical Reverse Characteristics (Per Leg)

$I_{R}=f\left(V_{R}, T_{j}\right)$

Figure 4: Current Derating Curves (Typical VF) (Per Leg)

$I_{F}=\mathrm{f}\left(\mathrm{T}_{\mathrm{C}}\right) ; \mathrm{D}=\mathrm{tp} / \mathrm{T} ; \mathrm{T}_{\mathrm{j}} \leq 175^{\circ} \mathrm{C} ; \mathrm{f}_{s w}>10 \mathrm{kHz}$

Figure 5: Current Derating Curves (Maximum VF) (Per Leg)

$I_{F}=f\left(T_{C}\right) ; D=t_{p} / T_{;} T_{j} \leq 175^{\circ} \mathrm{C} ; \mathrm{f}_{\mathrm{SW}}>10 \mathrm{kHz}$
Figure 7: Typical Capacitive Charge vs Reverse Voltage Characteristics (Per Leg)

Figure 6: Typical Junction Capacitance vs Reverse Voltage Characteristics (Per Leg)

Figure 8: Typical Capacitive Energy vs Reverse Voltage Characteristics (Per Leg)

$E_{c}=f\left(V_{R}\right) ; f=1 M H z$

Figure 9: Transient Thermal Impedance (Per Leg)

$Z_{\mathrm{th}, \mathrm{j}}=\mathrm{f}\left(\mathrm{t}_{\mathrm{p}, \mathrm{D}}\right) ; \mathrm{D}=\mathrm{tp} / \mathrm{T}$
Figure 10: Forward Curve Model (Per Leg)

Forward Voltage, $\mathrm{V}_{\mathrm{F}}(\mathrm{V})$
$I_{F}=f\left(V_{F}, T_{j}\right)$

Forward Curve Model Equation:
$I_{F}=\left(V_{F}-V_{B I}\right) / R_{\text {DIFF }}(A)$

Built-In Voltage (V_{B}):

$$
\begin{aligned}
V_{B B}\left(\mathrm{~T}_{\mathrm{j}}\right) & =\mathrm{m} \times \mathrm{T}_{\mathrm{j}}+\mathrm{n}(\mathrm{~V}) \\
\mathrm{m} & =-0.00123\left(\mathrm{~V} /{ }^{\circ} \mathrm{C}\right) \\
\mathrm{n} & =0.995(\mathrm{~V})
\end{aligned}
$$

Differential Resistance (Rdifr):

$$
\begin{aligned}
\text { RDIFF }\left(\mathrm{T}_{\mathrm{j}}\right) & =\mathrm{a} \times \mathrm{T}_{\mathrm{j}}{ }^{2}+\mathrm{b} \times \mathrm{T}_{\mathrm{j}}+\mathrm{c}(\Omega) \\
\mathrm{a} & =2.38 \mathrm{e}-07\left(\Omega / /^{\circ} \mathrm{C}^{2}\right) \\
\mathrm{b} & =3.38 \mathrm{e}-05\left(\Omega /{ }^{\circ} \mathrm{C}\right) \\
c & =0.01(\Omega)
\end{aligned}
$$

Forward Power Loss Equation:

$P_{\text {Loss }}=\mathrm{V}_{\text {BI }}\left(\mathrm{T}_{\mathrm{j}}\right) \times I_{\text {AVG }}+\mathrm{R}_{\text {DIFF }}\left(\mathrm{T}_{\mathrm{j}}\right) \times \mathrm{I}_{\text {RMS }}{ }^{2}$

Package Dimensions

SOT-227 Package Outline

Package View

NOTE

1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS.

S E M I C O N D U C T OR

Compliance

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS 2), as adopted by EU member states on January 2, 2013 and amended on March 31, 2015 by EU Directive 2015/863. RoHS Declarations for this product can be obtained from your GeneSiC representative.

REACH Compliance

REACH substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a GeneSiC representative to insure you get the most up-to-date REACH SVHC Declaration. REACH banned substance information (REACH Article 67) is also available upon request.

Disclaimer

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice. GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

Related Links

- SPICE Models: https://www.genesicsemi.com/sic-schottky-mps/GB2X50MPS12-227/GB2X50MPS12-227_SPICE.zip
- PLECS Models: https://www.genesicsemi.com/sic-schottky-mps/GB2X50MPS12-227/GB2X50MPS12-227_PLECS.zip
- CAD Models: https://www.genesicsemi.com/sic-schottky-mps/GB2X50MPS12-227/GB2X50MPS12-227_3D.zip
- Evaluation Boards: https://www.genesicsemi.com/technical-support
- Reliability: https://www.genesicsemi.com/reliability
- Compliance: https://www.genesicsemi.com/compliance
- Quality Manual: https://www.genesicsemi.com/quality

Revision History

- Rev 21/Mar: Updated with most recent data
- Supersedes: Rev 20/Apr, Rev 20/Aug

www.genesicsemi.com/sic-schottky-mps/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Discrete Semiconductor Modules category:
Click to view products by GeneSiC Semiconductor manufacturer:

Other Similar products are found below :

M252511FV	DD260N12K-A	DD380N16A	DD89N1600K-	APT2X21D	60 J APT58M	80J B522F-2-	EC MSTC90	25.163.0653.1	
25.163.2453.0	25.163.4253.0	25.190.2053.0	25.194.3453.0	25.320.4853.1	25.320.5253.1	25.326.3253.1	25.326.3553.1		330.1653 .1
25.330.4753.1	25.330.5253.1	25.334.3253.1	25.334.3353.1	25.350.2053.0	25.352.4753.1	25.522.3253.0	T483C T484C		485F T485H
T512F-YEB	T513F T514F	T554 T612FSE	25.161.3453.0	25.179.2253.0	25.194.3253.0	25.325.1253.1	25.326.4253.1		330.0953 .1
25.332.4353.1	25.350.1653.0	25.350.2453.0	25.352.1453.0	25.352.1653.0	25.352.2453.0	25.352.5453.1	25.522.3353.0		602.4053.0
25.640.5053.0									

[^0]: * Per Device

