

<u>G2263</u>

9A, 600kHz High Efficiency, Synchronous Boost Converter with Output Disconnect

Features

- 2.4V ~ 5.5V Input Voltage Operation.
- 98% Efficient DC/DC Converter
- 600kHz Fixed Switching Frequency
- 9A Typical Switch Current Limit
- 40uA Quiescent Current
- High Efficiency over Full Load Range
- Internal Soft-start and Compensation
- True Output Load Disconnect from Input
- Built-In OCP, SCP, OVP and OTP Protection
- AQFN2X2-14 Package.

General Description

The G2263 is a high efficiency, synchronous, current-mode, boost converter with output disconnect. The G22263 starts up from and input voltage as low as 1.9v, and maintains good performance with input voltage higher than 2.8V. The integrated P-channel synchronous rectifier improves efficiency and eliminated the need for an external Schottky diode. This P-channel disconnects the output from the input during shutdown. The G2263 provides a compact solution for a 5V output, 4A load requirement, using a supply voltage down to 2.8V.

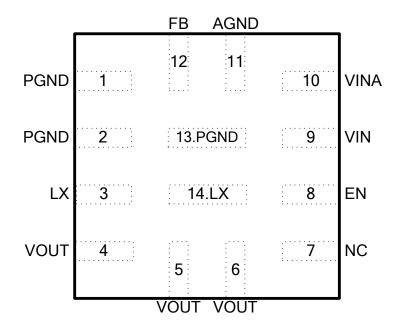
The G2263 is available in AQFN2x2-14 package.

Applications

Battery-powered Products

Ordering Information

ORDER NUMBER	MARKING	TEMP. RANGE	PACKAGE (Green)
G2263AV1U	2263	-40°C~+85°C	AQFN2X2-14


Note: AV: AQFN2x2-14

1: Bonding code

U: Tape & Reel

Green : Lead Free / Halogen Free

Pin Configuration

Absolute Maximum Ratings

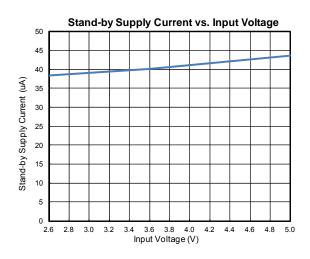
LX
EN0.3V to (VINA+0.3)V
All other Pins0.3V to +6.3V
Thermal Resistance Junction to Ambient, ($ heta$ _{JA})*
AQFN2X2-14
Continuous Power Dissipation (T _A =25°C)
AQFN2X2-14

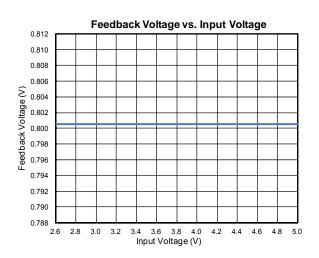
Operating Ambient Temperature -40°C to 85°C Storage Temperature Range. -55°C to +150°C Reflow Temperature (soldering, 10 sec) 260°C EDS Susceptibility (Human Body Mode) 2KV EDS Susceptibility (Machine Mode) 200V

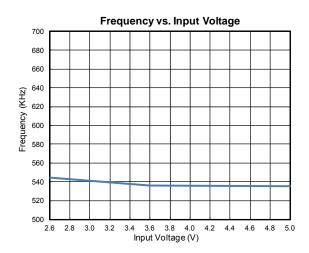
* The package is placed on a 2-layer PCB (1oz). Please refer to EV Board PCB Layout Section

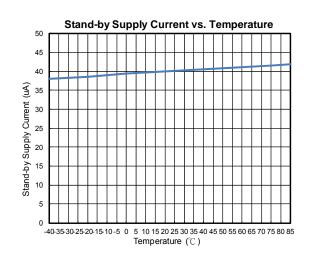
- 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- 2. Device is ESD sensitive. Handling precaution recommended. The Human Body model is a 100pF capacitor discharged through a 1.5K Ω resistor into each pin.

Electrical characteristics

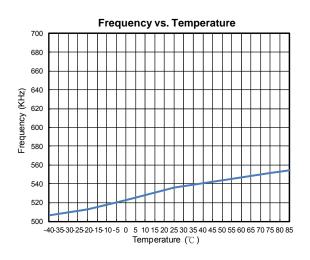

($V_{IN}=V_{INA}=3.3V$, $V_{OUT}=5V$, $T_A=25^{\circ}C$, unless otherwise specified)

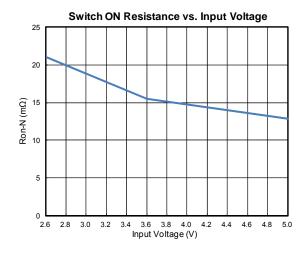

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT	
GENERAL							
VINA Start Operating Voltage	V _{VIN_ST}		1.9		5.5	V	
VINA Operating Voltage	V _{VIN}		2.6		5.5	V	
VINA Under Voltage threshold	V _{VIN_UVLO}	VIN falling		1.8		V	
Stand-by Supply Current	I _{VIN}	Zero output loading of all power units			40	μA	
Shutdown Current	I _{SD}	EN=0v		0.1	1	μA	
Boost Converter							
Feedback Regulation Voltage	V_{FB}		0.788	0.8	0.812	V	
Switching Frequency	F _{sw}		500	600	700	kHz	
Maximum Duty Cycle	D _{MAX}		85	90	95	%	
LX Leakage Current	I_{LX_LK}	V _{LX} =5.0V, V _{OUT} =0V		0.01	1	μA	
	Ron-N			11			
Switch ON Resistance	Ron-P			16		mΩ	
	I _{LIM_SCP}	V _{OUT} < V _{SCP}		1.2		Α	
NMOS Current Limit	I _{LIM_DOWN}	V _{SCP} < V _{OUT} < V _{IN}		4.5		Α	
	I _{LIM_BOOST}	$V_{OUT} > V_{IN}$		10		Α	
SCP Protection Threshold	V _{SCP}	V _{OUT}		0.8		V	
OVP Protection Threshold	V _{OVP}	V _{OUT} rising		5.8		V	
OVP Protection Hysteresis Voltage	V _{HYS_OVP}	V _{OUT}		150		mV	
Soft-Start Internal	t _{ss}			1		mS	
Control Signal	-						
EN Logic-Input Threshold	V _{TH}	High threshold	1.2			V	
	V _{TL}	Low threshold			0.4	V	
EN Input Current		Connect to V _{IN}		10		nA	
Protection					•		
Thermal Shutdown Detect	T _{SD}			150		°C	
Thermal Shutdown Hysteresis	ΔT_{SD}			20		°C	

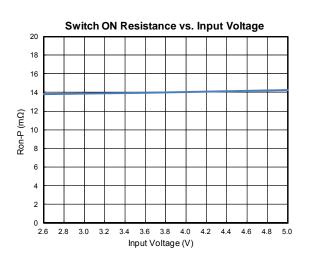


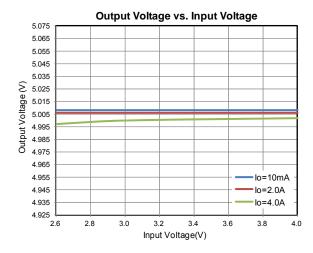

Typical Performance Characteristics

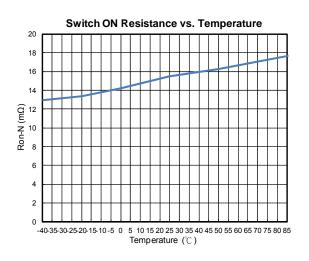
(V_{IN}=V_{INA}=3.3V , V_{OUT}=5V , L1=1.5 \mu H , T_A=25 ^{\circ}C , unless otherwise noted.)

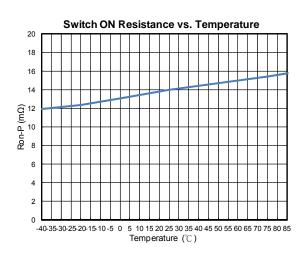


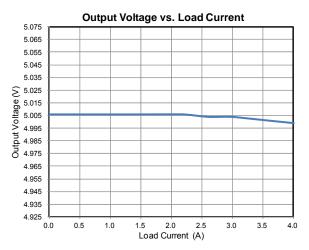

Feedback Voltage vs. Temperature 0.812 0.810 0.808 0.806 Feedback Voltage (V) 0.804 0.802 0.800 0.798 0.796 0.794 0.792 0.790 0.788 -40-35-30-25-20-15-10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 Temperature (°C)

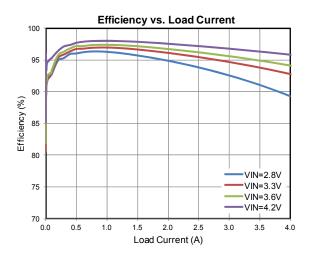


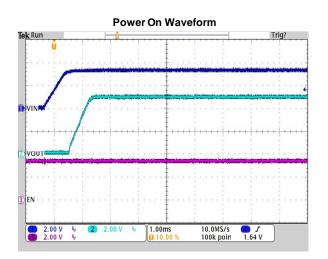

Ver: 0.2 Mar 20, 2018

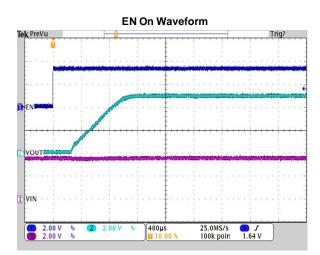


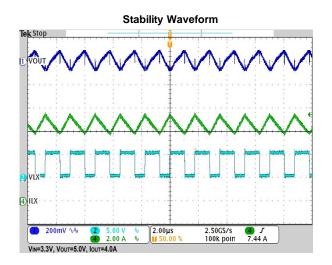

Typical Performance Characteristics (continued)

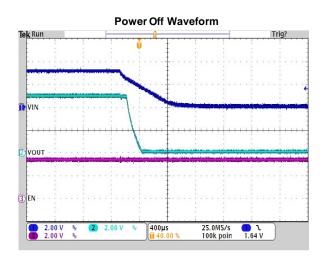


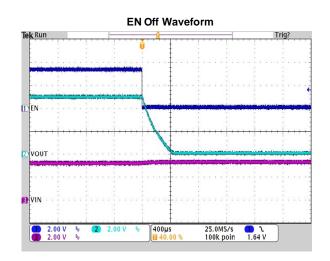


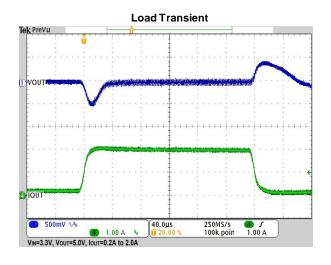


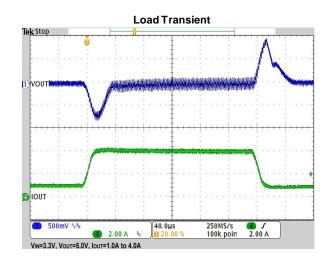




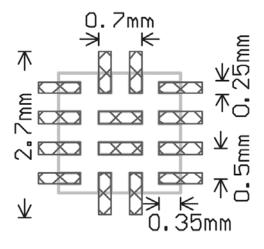

Typical Performance Characteristics (continued)





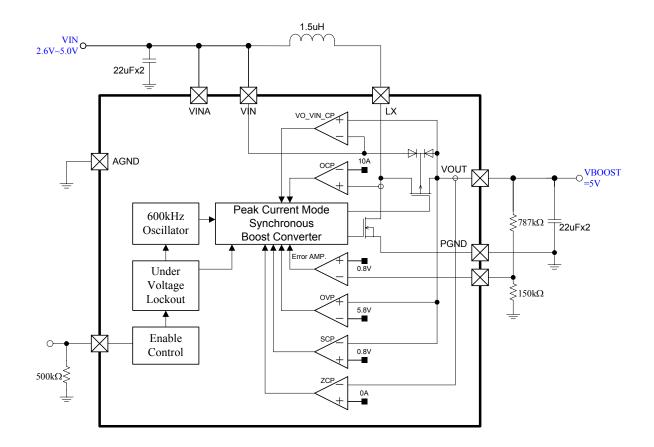


Ver: 0.2 Mar 20, 2018


Typical Performance Characteristics (continued)

Minimum Footprint PCB Layout Section

AQFN2X2-14

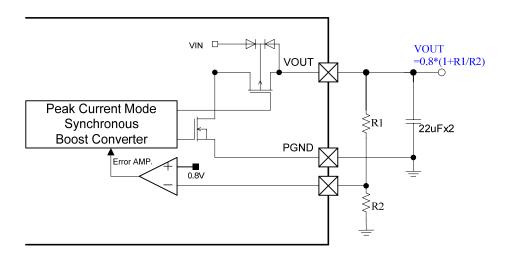


Pin Description

Pin No	Pin Name	Function			
1,2,13	PGND	Power Ground.			
3,14	LX	Inductor switch node of Boost Converter.			
4,5,6	VOUT	Output Voltage of Boost Converter.			
7	NC	o Connect. Float or connect this pin to GND in the application.			
8	EN	Chip Enable Control Input. Active-H. Don't leave this pin floating in the application.			
9	VIN	Power supply input of Boost Converter. Bypass with a 10uF or greater ceramic capacitor to PGND.			
10	VINA	Power supply input of Chip. Bypass with a 10uF or greater ceramic capacitor to AGND.			
11	AGND	Analog Signal Ground.			
12	FB	Feedback Input to Error Amplifier. The output voltage can be adjusted from 2.5V to 5.5V			

Block Diagram & Application Circuit

Function Description


The G2263 is a 600kHz, synchronous boost converter with true output disconnect. The device features fixed-frequency current mode PWM controls for excellent line and load regulation. Internal soft-start and loop compensation simplifies the design process and minimizes external components.

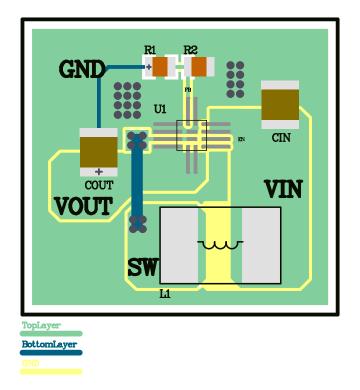
The operation of G2263 is enabled when the EN pin is toggled high and placed into shutdown mode when low. In shutdown mode, the regulator stops switching and all internal control circuitry is off. The load is isolated from the input.

When G2263 is enables and the voltage on the VINA pin exceeds V_{VIN_UVLO} , the output stage starts switching in normal closed loop operation. In normal operation, with V_{OUT} lower than V_{IN} +0.1V, the G2263 operates in step-down mode with 4.5A typical peak current limit, and works in boost mode when V_{OUT} is higher than V_{IN} +0.1V with 10A typical peak current limit. In step-down mode, gate of HS-FET is pulled to VIN, and it works with high impedance when HS-FET is on, the power-loss is high and regulation is band in step-down mode. The step-down mode is designed for work in startup and SCP condition, it is not suggested to set G2263 in step-down mode in normal work. The G2263 provides soft-start for V_{OUT} to ramp up from 0V to VOUT_{SET}, and the soft start time is typically 1ms.

The G2263 automatically enter power save mode (PSM) when the load decreases and resumes PWM mode when the load increases. When the device goes into PSM, it lowers the switching frequency saving switching and driver losses, and switches to pulse skipping mode if the load continues to decrease.

The error amplifier is an internally-compensated amplifier. The EA compares the internal 0.8V reference voltage against V_{FB} to generate an error signal. The output voltage of the G2263 is adjusted by an external resistor divider. A voltage divider from V_{OUT} to ground programs the output voltage via the FB pin from 2.5V to 5.5V.

Fault Protection

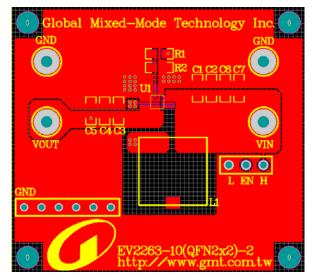

G2263 provides over-current protection, over-voltage protection, short-circuit protection, and thermal shutdown protection to achieve complete protection.

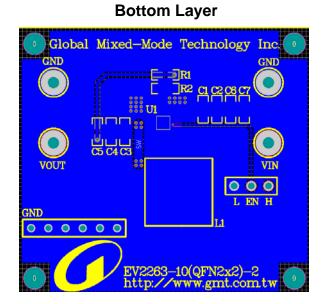
Protection type	Threshold	Protection methods	Reset Method	
	NMOS current>10A V _{OUT} >V _{IN} +0.1V	NMOS Off, PMOS on	Automatic Reset at next cycle	
Current Limit	NMOS current>4.5A V _{OUT} <v<sub>IN+0.1V</v<sub>	NMOS Off, PMOS on	Automatic Reset at next cycle	
	NMOS current>1.2A V _{OUT} <v<sub>SCP</v<sub>	NMOS Off, PMOS on	Automatic Reset at next cycle	
OVP	V _{OUT} >5.8V	NMOS Off, PMOS on	Resume switching when V _{OUT} <5.6V	
SCP	V _{OUT} <0.8V	Decrease NMOS current limit to 1.2A	Restart soft-start when V _{OUT} >0.8V	
TSD	Junction Temp. >150°C	IC shutdown	Junction Temp. <130°C	

Layout Guide

As for all switching power supplies, the layout is an important step in the design, especially at high peak currents and switching frequencies. If the layout is not carefully implemented, the regulator can show noise problems and duty cycle jitter.

The inductor must be placed as close as possible to the switch pin (SW) to minimize noise coupling into other circuits. Because the feedback pin and network is a high-impedance circuit, the feedback network must be routed away from the inductor. Also, the input capacitor must be placed as close as possible to the input pin for good input-voltage filtering.

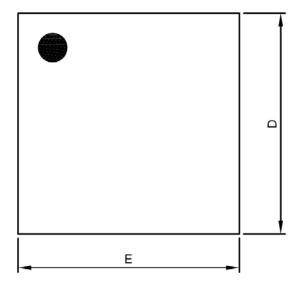


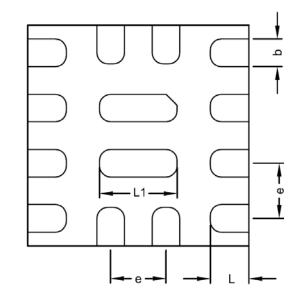


G2263

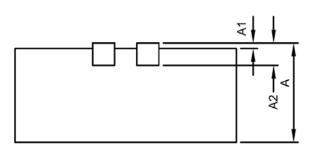
EV Board PCB Layout Section

Top Layer

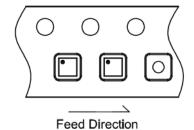



Board Information

Board Material	FR4		
Size	152.4mm*101.6mm		
Board Thickness	1.6mm		
Layers	2		
Copper Thickness	1oz.		



Package Information


<u>G2263</u>

AQFN2X2-14 Package

Complete	DIMENSION IN MM			DIMENSION IN INCH			
Symbol	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
A	0.80	0.90	1.00	0.0315	0.0354	0.0394	
A1	0.00		0.05	0.0000		0.0020	
A2	0.20 REF			0.0079 REF			
D	1.95	2.00	2.05	0.0768	0.0787	0.0807	
E	1.95	2.00	2.05	0.0768	0.0787	0.0807	
b	0.20	0.25	0.30	0.0079	0.0098	0.0118	
е	0.50 BSC			0.0197 BSC			
L	0.30	0.35	0.40	0.0118	0.0138	0.0157	
L1	0.65	0.70	0.75	0.0256	0.0276	0.0295	

Taping Specification

PACKAGE	Q'TY/REEL	
AQFN2X2-14	3,000 ea	

GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Controllers category:

Click to view products by GMT(Global Mixed-mode Tech) manufacturer:

Other Similar products are found below :

LV5065VB-TLM-H LV5066V-TLM-H LV5725JAZ-AH 633888R MP2908AGF AZ7500EP-E1 NCP1012AP133G NCP1217P133G NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP1587GDR2G NCP6153MNTWG NCP81005MNTWG NCP81101BMNTXG NCP81205MNTXG HV9123NG-G-M934 IR35207MTRPBF ISL6367HIRZ CAT874-80ULGT3 SJ6522AG SJE6600 TLE63893GV50XUMA1 IR35215MTRPBF SG3845DM NCP1216P133G NCP1236DD65R2G NCP1247BD100R2G NCP1250BP65G NCP4202MNR2G NCP4204MNTXG NCP6132AMNR2G NCP81141MNTXG NCP81142MNTXG NCP81172MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UC3845ADM UBA2051C IR35201MTRPBF MAX8778ETJ+ MAX17500AAUB+T MAX17411GTM+T MAX16933ATIR/V+ NCP1010AP130G NCP1063AD100R2G NCP1216AP133G NCP1217AP100G