Specification of MEMS Microphone

(RoHS Compliance & Halogen Free)

Customer Name : Customer Model : GoerTek Model : S08OB381-026

GoerTek			CUSTOMER APPROVAL
DESIGN	Jasen	2017.03.31	
<u>CHKD</u>	Sweety	2017.03.31	
STANDARD	Chloe	2017.03.31	
APVD	Mars	2017.03.31	

Version: 3.0

Confidential in Goertek, shall not be spread if not be privileged.

E- Mail : <u>goertek@goertek.com</u> Website: <u>http://www.goertek.com</u>

Address: No.268 Dongfang Road, High-Tech Industry Development District, Weifang, Shandong, P.R.C.

1 Security Warning

The information contained in this document is the exclusive property of GoerTek Inc. and should not be disclosed to any third party without the written consent of GoerTek Inc.

2 Publication History

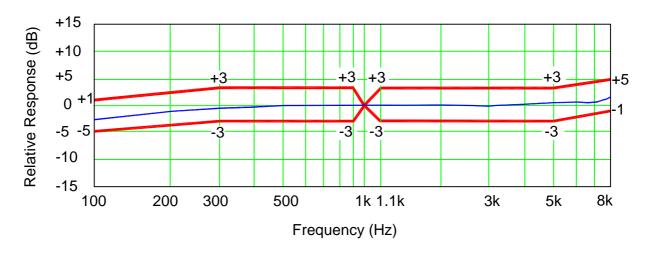
Version	Description	Date	Author	Approved
1.0	New Design	2015.06.30	Reddy	Worden
2.0	Update Appearance Drawing	2016.11.18	Jasen	Mars
3.0	Update Reliability Condition	2017.03.31	Jasen	Mars

Contents

1		4
2	Test Condition	4
3	Acoustic and Electrical Characteristics	4
4	Frequency Response Curve	4
5	Measurement Circuit	5
6	Test Setup Drawing	5
7	Mechanical Characteristics	6
	7.1 Appearance Drawing	6 6
8	Reliability Condition	7
	8.1 Vibration Test	
	8.9 Air Blow Test —	7
9	8.9 Air Blow Test	7 8 9 9 10
	8.9 Air Blow Test	8 8 9 9
10	8.9 Air Blow Test	8 8 9 9 10
10	8.9 Air Blow Test	8 8 9 10 10 11
10 11	8.9 Air Blow Test Package 9.1 Tape Specification 9.2 Reel Dimension 9.3 The Content of Box 9.4 Packing Explain 9.4 Packing Explain	8 8 9 10 10 11
10 11	8.9 Air Blow Test Package 9.1 Tape Specification 9.2 Reel Dimension 9.3 The Content of Box 9.4 Packing Explain 9.4 Packing Explain Storage and Transportation	8 8 9 9 10 10 11 11
10 11 12 13	8.9 Air Blow Test Package 9.1 Tape Specification 9.2 Reel Dimension 9.3 The Content of Box 9.4 Packing Explain 9.4 Packing Explain 9.5 Storage and Transportation 11.1 The Pattern Recommendation 11.2 Recommended Soldering Surface Land Pattern Soldering Recommendation 12.1 Soldering Machine Condition	8 8 9 9 10 10 11 11 11 12 12 12

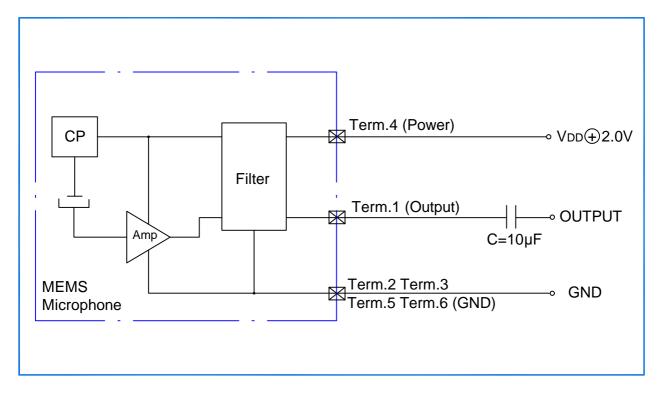
1 Introduction

MEMS MIC which is able to endure reflow temperature up to 260 $^\circ\!C$ for 50 seconds can be used in SMT process. It is widely used in telecommunication and electronics device such as mobile phone, MP3, PDAs etc.

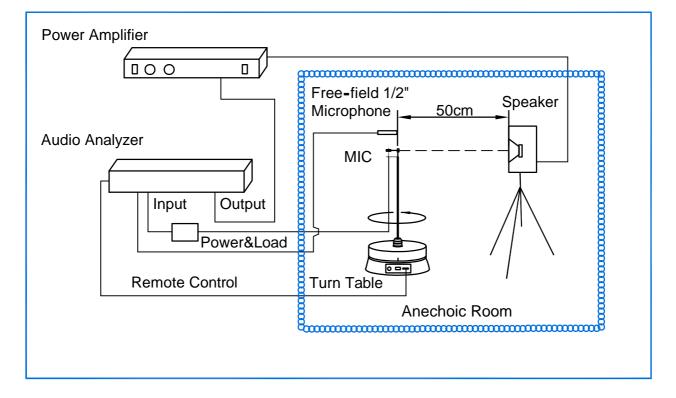

2 Test Condition (Vs=2.0V, L=50cm)

StandardConditions (As IEC 60268-4)	Temperature	Humidity	Air pressure	
Environment Conditions	+15℃~+35℃	25%R.H.~75%R.H.	86kPa \sim 106kPa	
Basic Test Conditions	+20 ℃ ± 2℃	60%R.H.~70%R.H.	86kPa \sim 106kPa	

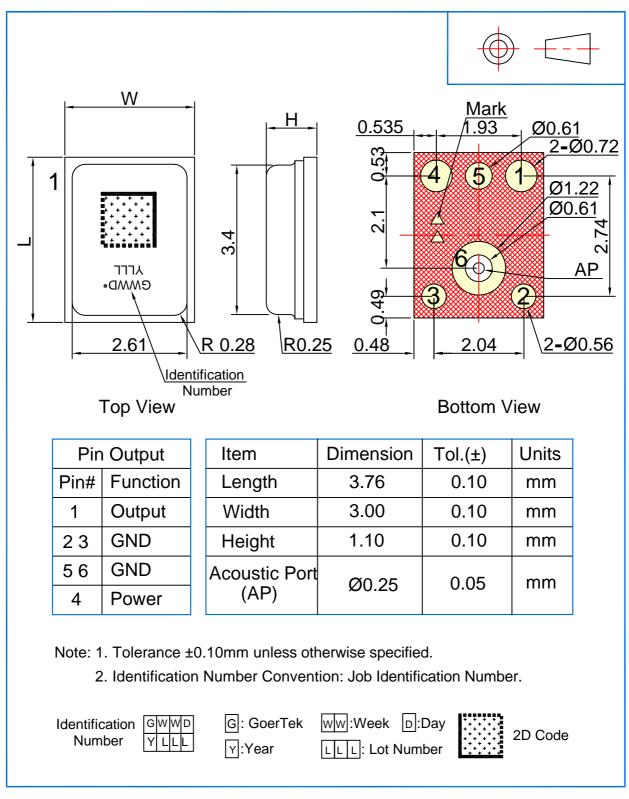
3 Acoustic and Electrical Characteristics


Item	Symbol	Test Conditions	Min	Тур	Max	Unit
Sensitivity	S	f=1kHz, Pin=1Pa	-39	-38	-37	dBV/Pa
Directivity	D(θ)	Omnidirectional				
Output Impedance	Zout	f=1kHz, Pin=1Pa			300	Ω
Operating Voltage Range	Vs		1.5	2.0	3.3	V
Current Consumption	I		50		250	μA
Decreasing Voltage Characteristic	∆S	f=1kHz, Pin=1Pa Vs =3.3 → 1.5V	Ν	lo Chang	e	dBV/Pa
S/N Ratio	S/N(A)	f=1kHz, Pin=1Pa (A-weighted)		62		dB
Total Harmonic Distortion	THD	110dB SPL@f=1 kHz			1	%

4 Frequency Response Curve and Limits



5 Measurement Circuit

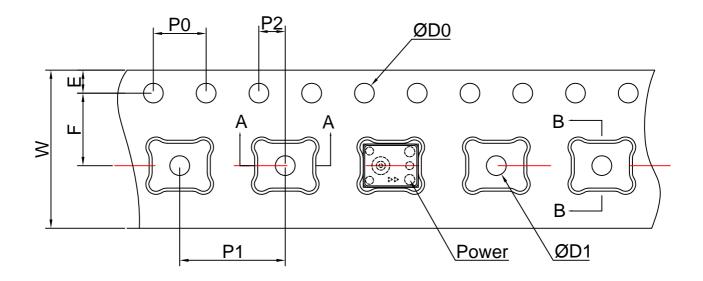


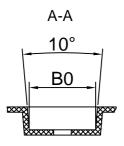
6 Test Setup Drawing

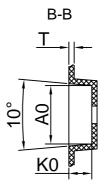
7 Mechanical Characteristics

7.1 Appearance Drawing (Unit: mm)

7.2 Weight

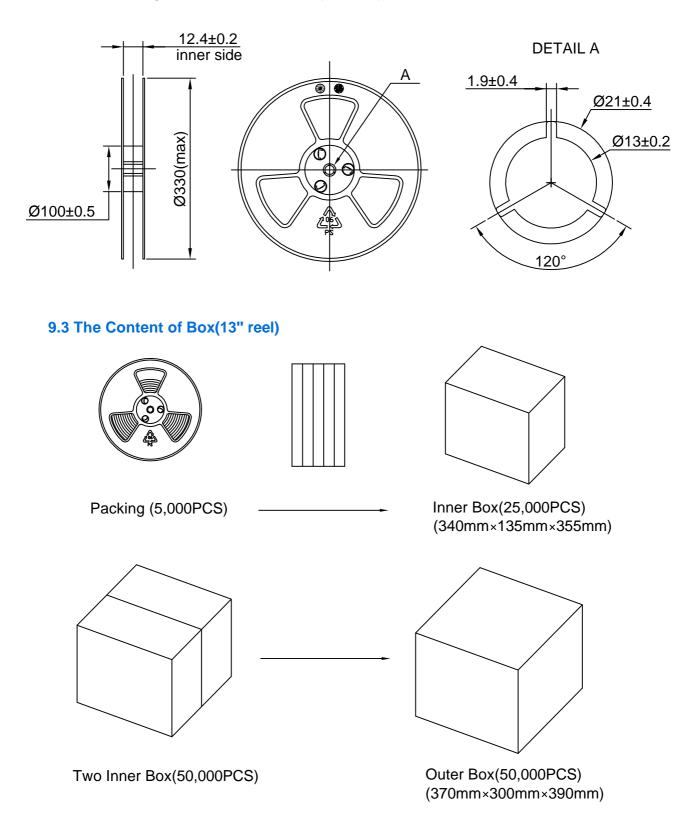

The weight of the MIC is Less than 0.04g.


8 Reliability Condition


8.1 Vibration Test	To be no interference in operation after vibrations, 4 cycles, from 20 to 2,000Hz in each direction(X,Y,Z), 48 minutes, using peak acceleration of 20g, sensitivity should vary within ± 3 dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at $\pm 15^{\circ}$, R.H.25% \sim 75%)
8.2 Drop Test	To be no interference in operation after dropped to 1.0cm steel plate 12 times from 1.5 meter height in state of JIG, JIG weight of 100g, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15°C~+35°C, R.H.25%~75%)
8.3 Temperature Test	 a) After exposure at +125 °C for 200 hours, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15 °C ~+35 °C, R.H.25% ~75%) b) After exposure at -40 °C for 200 hours, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15 °C ~+35 °C, R.H.25% ~75%)
8.4 Humidity Test	After exposure at +85 $^{\circ}$ C and 85% relative humidity for 200 hours, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15 $^{\circ}$ C ~+35 $^{\circ}$ C, R.H.25% ~75%)
8.5 Mechanical Shock Test	Then subject samples to three one-half sine shock pulses (3000 g for 0.3 milliseconds) in each direction (for six axes in total) along each of the three mutually perpendicular axes for a total of 18 shocks, sensitivity should vary within \pm 3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15°C~+35°C, R.H.25%~75%)
8.6 Thermal Shock Test	After exposure at -40 $^{\circ}$ C for 30 minutes, at +125 $^{\circ}$ C for 30 minutes (change time 20 seconds) 32 cycles, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15 $^{\circ}$ C ~+35 $^{\circ}$ C, R.H.25 $^{\circ}$ ~75%)
8.7 Reflow Test	Adopt the reflow curve of item 12.3, after three reflows, sensitivity should vary within ±2dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15°C~+35°C, R.H.25%~75%)
8.8 Electrostatic Discharge Test	Under C=150pF, R=330ohm. Tested to ± 8 KV contact to the case and tested to ± 2 kV contact to I/O terminals.10 times. Grounding. Sensitivity should vary within ± 3 dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at $\pm 15^{\circ}C \rightarrow \pm 35^{\circ}C$, R.H.25% $\sim 75\%$)
8.9 Air Blow Test	0.4MPa, 50mm, 10s, airgun diameter: 1mm, 20pcs. Sensitivity should vary within 3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15℃~+35℃, R.H.25%~75%)

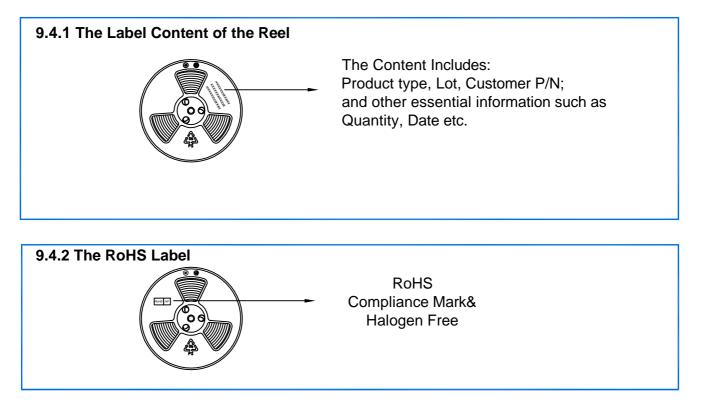
9 Package

9.1 Tape Specification


The Dimensions as Follows:

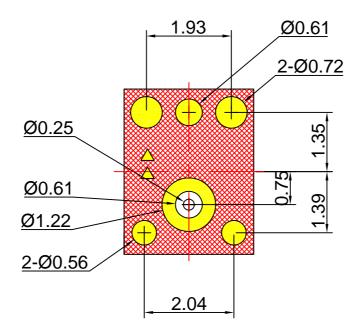
ITEM	W	E	F	ØD0	ØD1
DIM(mm)	12.0±0.30	1.75±0.10	5.5±0.05	1.50±0.1	1.0 MIN
ITEM	P0	10P0	P1	A0	B0
DIM(mm)	4.00±0.10	40.00±0.20	8.00±0.10	3.28±0.10	4.03±0.10
ITEM	K0	P2	т		
DIM(mm)	1.30±0.10	2.00±0.05	0.30±0.05		

9.2 Reel Dimension

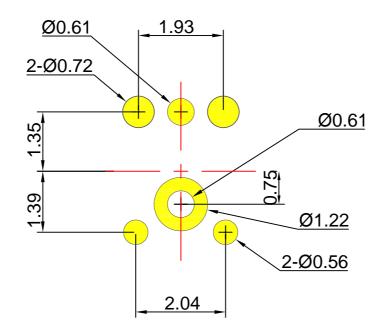

- 7" reel for sample stage
- 13" reel will be provided for the mass production stage

The following is 13" reel dimensions (unit:mm)

9.4 Packing Explain


10 Storage and Transportation

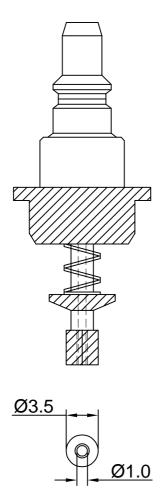
- 10.1 Keep MEMS MIC in warehouse with less than 75% humidity and without sudden temperature change, acid air, any other harmful air or strong magnetic field. Recommend storage period no more than 1 year and floor life(out of bag) at factory no more than 4 weeks.
- 10.2 The MEMS MIC with normal pack can be transported by ordinary conveyances. Please protect products against moist, shock, sunburn and pressure during transportation.
- 10.3 Storage Temperature Range : -40 $^{\circ}$ C ~+70 $^{\circ}$ C (Microphone units with package)
- 10.4 Operating Temperature Range : $-40^{\circ}C \sim +100^{\circ}C$


11 Land Pattern Recommendation

Goertek

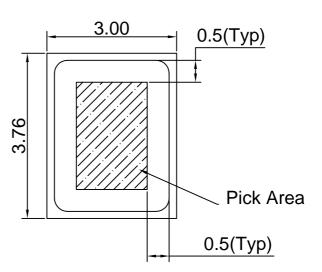
11.1 The Pattern of MIC Pad(Unit:mm)

11.2 Recommended Soldering Surface Land Pattern(Unit:mm)

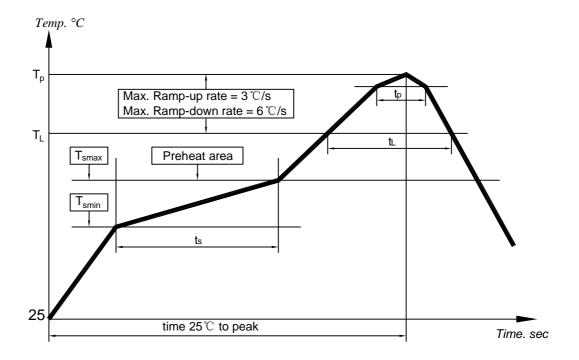


12 Soldering Recommendation

12.1 Soldering Machine Condition


Temperature Control	8 zones	
Heater Type	Hot Air	
Solder Type	Lead-free	

12.2 The Drawing and Dimension of Nozzle



Inside Diameter: Ø1.0mm; Acoustic Port: Ø0.25mm; Vacuum Degree of Nozzle: -80~-90kPa;

Please don't vacuum over the acoustic port directly. Please don't blow the acoustic port directly.

12.3 Reflow Profile

Key Features of The Profile:

Average Ramp-up rate(T_{smax} to T_p)	3℃/s max.
Preheat : Temperature Min(T _{smin}) Temperature Max(T _{smax}) Time(T _{smin} to T _{smax})(t _s)	150℃ 200℃ 60~180s
Time maintained above : Tempreature(T _L) Time(t _L)	217℃ 60~150s
Peak Temperature(T _p)	260 ℃
Time within 5 $^\circ\!{\rm C}$ of actual Peak Temperature(t_p) :	30~40s
Ramp-down rate(T _p to T _{smax})	6℃/s max
Time 25 $^\circ\!\!\!\!\!^\circ \mathbb{C}$ to Peak Temperature	8min max

When MEMS MIC is soldered on PCB, the reflow profile is set according to solder paste and the thickness of PCB etc.

13 Cautions When Using MEMS MIC

13.1 Board Wash Restrictions

It is very important not to wash the PCBA after reflow process, otherwise this could damage the microphone.

13.2 Nozzle Restrictions

It is very important not to pull a nozzle over the port hole of the microphone. otherwise this could damage the microphone.

13.3 Ultrasonic Restrictions

It is very important not to use ultrasonic process. otherwise this could damage the microphone.

14 Output Inspection Standard

Output inspection standard is executed according to <<ISO2859-1:1999>>.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MEMS Microphones category:

Click to view products by Goertek manufacturer:

Other Similar products are found below :

 8103AC8333S25.00000X
 S-VM2020-C
 SPK0838HT4H-1
 MSM261D4030H1CPM
 WMM7027ABSN0-4/TR
 WMM7040DTHN0-8/TR

 WMM7027ATHD1-4/TR
 WMM7037AT6-4/TR
 WMM7027ATSN1-4/TR
 GMA2718H09-F42-4P
 WMM7037ATSN0-4/TR
 1007079-1

 ASFLM1-25.000MHZ-C
 5000AC-8E-25E0-25.000000X
 ICS-40180
 ICS-40618
 ICS-43432
 INMP504ACEZ-R7

 INMP510ACEZ-R7
 3807ACTC3-33EG-8.19200
 501AAA27M0000CAF
 SIT9120AC-2C2-25E125.000000
 SIT9120AC-2C2-25E200.000000

 SIT9121AI-2C3-33E100.000000
 SPU0410LR5H-QB
 9120AI-2C3-25E100.0000
 8002AI-13-33E16.00000
 5001AI-2D-18N0-20.000000

 UC2000-30GM-IUR2-V15
 ICS-41350
 ICS-40619
 MM042602-4
 PMM-3738-VM1010-R
 MP34DT06JTR
 ICS-52000
 SPW0442HR5H-1

 MM042602-5
 MM033802-1
 ICS-43434
 ASFLM2-28.224MHZ-LR-T
 ICS-40310
 ICS-40720
 INMP404ACEZ-R7
 INMP522ACEZ-R7

 INMP621ACEZ-R7
 9003AC-14-33EQ25.00000
 SIT9120AC-2C2-33E125.000000
 1618AA-13-33S-16.000000G
 SPQ0410HE5H-PB