

Specification of MEMS Microphone

(RoHS Compliance & Halogen Free)

Customer Name:

Customer Model:

GoerTek Model: SD18OB261-060

G	ioerTek	CUSTOMER APPROVAL
DESIGN	Jasen 2018.10.05	
<u>CHKD</u>	Samual 2018.10.05	
STANDARD	Sweety _{2018.10.05}	
APVD	Daniel 2018.10.05	

Restricted

1 Security Warning

The information contained in this document is the exclusive property of GoerTek Inc. and should not be disclosed to any third party without the written consent of GoerTek Inc.

2 Publication History

Version	Description	Date	Author	Approved
1.0	New Design	2018.10.05	Jasen	Daniel

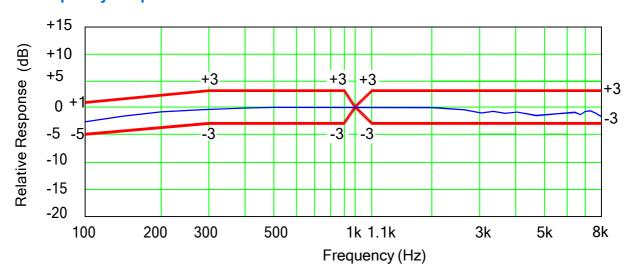
Contents

1	Introduction	4
2	Test Condition	4
3	Acoustical and Electrical Characteristics – – – – – – – – – – – – – – – – – – –	4
	3.1 Standard Performance Mode — — — — — — — — — — — — — — — — — — —	4
	3.2 Frequency Response Curve and Limits ————————————————————————————————————	4
	3.3 Low Power Mode — — — — — — — — — — — — — — — — — — —	5
	3.4 General Microphone Specification	5
	3.5 Micronphone Interface Specifications ————————————————————————————————————	6
4	Measurement Circuit	7
5	Test Setup Drawing — — — — — — — — — — — — — — — — — — —	7
6	Mechanical Characteristics – – – – – – – – – – – – – – – – – – –	8
	6.1 Appearance Drawing — — — — — — — — — — — — — — — — — — —	8
	6.2 Weight — — — — — — — — — — — — — — — — — — —	8
7	Reliability Test	9
	7.1 Vibration Test — — — — — — — — — — — — — — — — — — —	9
	7.2 Drop Test	9
	7.3 Temperature Test ————————————————————————————————————	9
	7.4 Humidity Test — — — — — — — — — — — — — — — — — — —	9
	7.5 Mechanical Shock Test ————————————————————————————————————	9
	7.6 Thermal Shock Test ————————————————————————————————————	9
	7.7 Reflow Test	9
	7.8 ESD Shock Test — — — — — — — — — — — — — — — — — — —	9
8	Package	10
	8.1 Tape Specification — — — — — — — — — — — — — — — — — — —	10
	8.2 Reel Dimension — — — — — — — — — — — — — — — — — — —	11
	8.3 The Content of Box — — — — — — — — — — — — — — — — — — —	11
	8.4 Packing Explain — — — — — — — — — — — — — — — — — — —	12
	Storage and Transportation	12
10	Land Pattern Recommendation————————————————————————————————————	13
	10.1 The Pattern of MIC Pad	13
	10.2 Recommended Soldering Surface Land Pattern ————————————————————————————————————	13
11	Soldering Recommendation — — — — — — — — — — — — — — — — — — —	14
	11.1 Soldering Machine Condition —	14
	11.2 The Drawing and Dimension of Nozzle — — — — — — — — — — — — — — — — — — —	14
	11.3 Reflow Profile — — — — — — — — — — — — — — — — — — —	15
40	11.4 Rework — — — — — — — — — — — — — — — — — — —	16
12		16
	12.1 Board Wash Restrictions — — — — — — — — — — — — — — — — — — —	16
	12.2 Sound Hole Productions ————————————————————————————————————	16
	12.3 Wire Width Adaption — — — — — — — — — — — — — — — — — — —	16
12		16
13	Output Inspection Standard	16

1 Introduction:

MEMS MIC which is able to endure reflow temperature up to 260 $^{\circ}$ C for 50 seconds can be used in SMT process. It is widely used in telecommunication and electronics device such as mobile phone, MP3, PDAs etc.

2 Test Condition (L=50 cm)


StandardConditions (As IEC 60268-4)	Temperature	Humidity	Air pressure
Environment Conditions	+15℃~+35℃	25%RH~75%RH	86kPa \sim 106kPa
Basic Test Conditions	+20℃±2℃	60%RH~70%RH	86kPa \sim 106kPa

3 Acoustical and Electrical Characteristics

3.1 Standard Performance Mode (Test Condition: V DD=1.8V, fCLK=2.4MHz)

Item	Symbol	Test Conditions	Min	Тур	Max	Unit
Sensitivity	S	f=1kHz, Pin=1Pa	-27	-26	-25	dBFS (Note 1)
Current Consumption (Note 2)	Ι	f _{clk} =2.4MHz	-	390	500	μΑ
S/N Ratio	SNR	f=1kHz, P _{in} =1Pa A-Weighted Curve	-	65	-	dB
Distortion	THD	94dB SPL@ 1kHz	-	ı	1	%
Acoustic Overload Point	AOP	10% THD @1 kHz	-	120	-	dB SPL
Power Supply Rejection	PSR	100mVpp squarewave@217Hz	-	-88	-	dBFS
Power Supply Rejection Ratio	PSRR	100mVpp squarewave@217Hz	-	60	-	dBFS

3.2 Frequency Response Curve and Limits

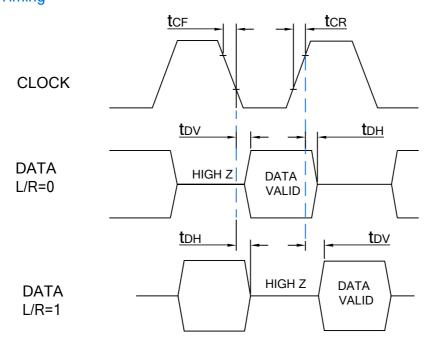
3.3 Low Power Mode (Test Condition: V_{DD} =1.8V, f_{CLK} =768kHz)

Item	Symbol	Test Conditions	Min	Тур	Max	Unit
Sensitivity	S	f=1kHz, Pin=1Pa	-26.5	-25.5	-24.5	dBFS (Note 1)
Current Consumption (Note 2)	I	f _{clk} =768kHz	-	250	350	μА
S/N Ratio	SNR	f=1kHz, P _{in} =1Pa A-Weighted Curve	-	62	-	dB
Distortion	THD	94dB SPL@ 1kHz	-	-	1	%
Acoustic Overload Point	AOP	10% THD @1 kHz	-	120	-	dB SPL
Power Supply Rejection	PSR	100mVpp squarewave@217Hz	-	-88	-	dBFS
Power Supply Rejection Ratio	PSRR	100mVpp squarewave@217Hz	-	60	-	dBFS

3.4 General Microphone Specifications

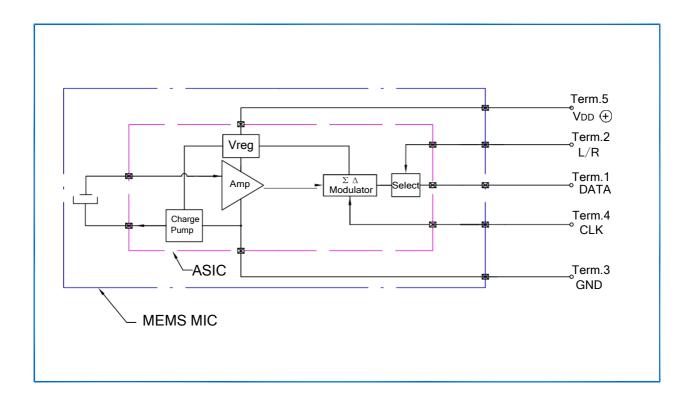
Test Condition: V_{DD}=1.8V,f_{CLK}=2.4MHz, select pin grounded,no load.

	ltem	Symbol	Test Conditions	Min	Тур	Max	Unit
Sup	ply Voltage	V_{DD}		1.60	•	3.6	٧
Frequency	Sleep Mode			0	ı	150	kHz
Range	Standard Mode			1.2	-	3.5	MHz
Slee	p Current	l _{sleep}		-	10	•	μΑ
Di	rectivity				Omnidir	ectional	
F	Polarity		Increasing Sound	Increasing density of 1's			l's
Dat	Data Format				PD	M	
Short Ci	rcuit Current	I _{SC}	Ground Data Pin	-	-	20	mA
Out	put Load	C _{load}		-	140	-	pF
Fall-a	sleep Time			-	-	10	ms
Wak	e-up Time	T _W	f _{CLK} ≥200kHz	-	-	20	ms
Sta	rt-up Time	T _S		-	-	50	ms
Mode-C	Change Time			-	-	10	ms

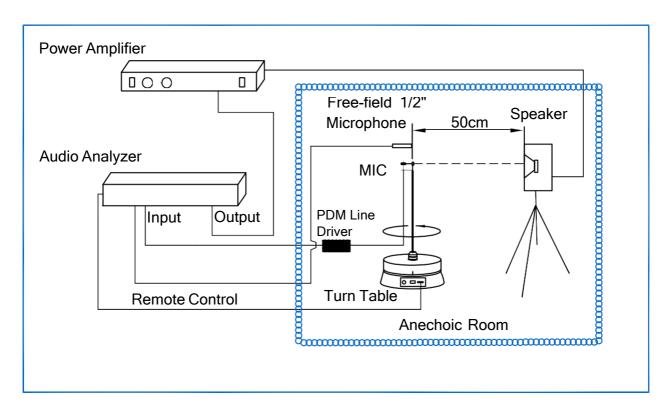

3.5 Microphone Interface Specifications

Item	Symbol	Test Conditions	Min	Тур	Max	Unit
Logic Input High	V _{IH}		0.65× V _{DD}	-	3.6	V
Logic Input Low	V _{IL}		-0.3	-	0.35× V _{DD}	V
Logic Output High	V _{OH}		V _{DD} -0.45	-	V _{DD}	V
Logic Output Low	V _{OL}		0	-	0.45	V
SELECT(high)			V _{DD} -0.45	-	3.6	٧
SELECT(low)			-0.3	-	0.2	٧
Clock Duty Cycle		f _{CLK} ≤ 2.4MHz	40	-	60	%
Glock Buty Cycle		2.4MHz < f _{CLK} ≤ 3.5MHz	48	50	52	%
Clock Rise/Fall Time	t _{CF} ,t _{CR}		-	-	6	ns
Dalay Time for Valid Data	t _{DV}	No load for min t _{DV}	10		F0	ns
(Note 3)	D V	Max C _{LOAD} for max t _{DV}	18	-	50	110
DalayTime for High Z	t _{DH}		5	-	16	ns

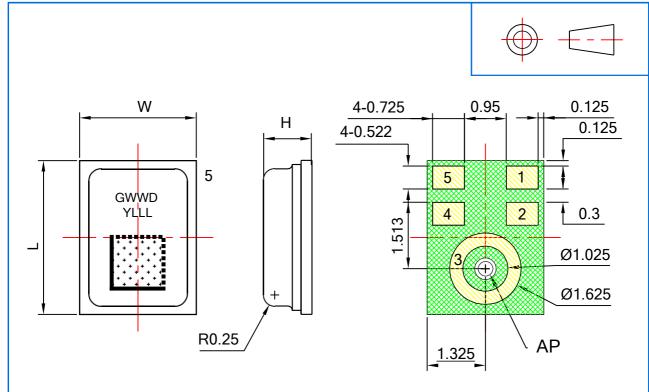
Note 1. dBFS = 20xlog (A/B) where A is the level of the signal, B is the level that corrsponds to Full-scale level.


Note 2. The current consumption depends on the applied Clock Frequency and the load on the DATA output.

Note 3. Timing



4 Measurement Circuit


5 Test Setup Drawing

6 Mechanical Characteristics

6.1 Appearance Drawing (Unit: mm)

Top View

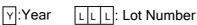
Side View

Bottom View

Pin#	Function
1	Data
2	L/R
3	GND
4	CLK
5	VDD

ITEM	DIMENSION	TOLERANCE	UNITS
Length(L)	3.50	±0.10	mm
Width(W)	2.65	±0.10	mm
Height(H)	0.98	±0.10	mm
ACOUSTIC PORT(AP)	Ø0.325	±0.05	mm

Note: 1. Tolerance ±0.10mm unless otherwise specified.


2. Identification Number Convention: Job Identification Number.

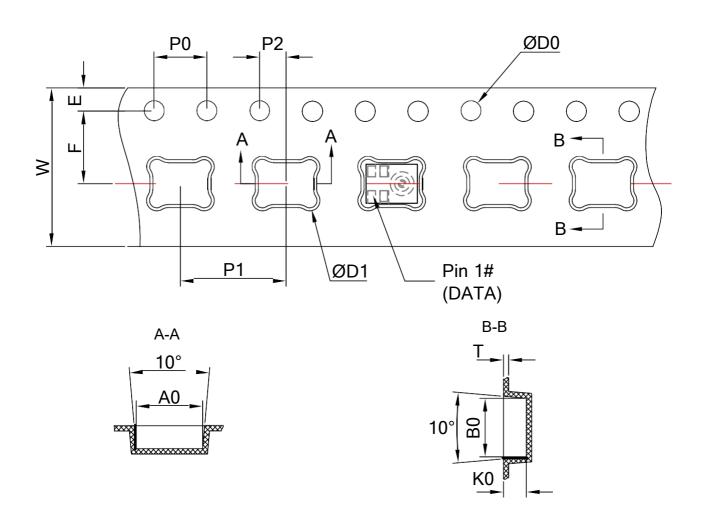
Identification Number

G	W	W	D
Υ	L	L	L

G: GoerTek

6.2 Weight

The weight of the MIC is Less than 0.05g.


7 Reliability Test

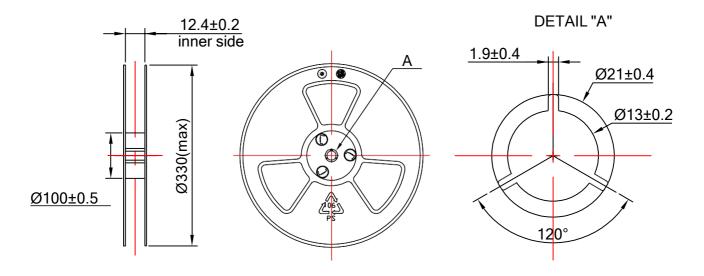
7.1 Vibration Test	To be no interference in operation after vibrations, 4 cycles, from 20 to 2000HZ in each direction (X,Y,Z), 48min, user acceleration of 20g, sensitivity should vary within $\pm 3dB$ from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15 $^{\circ}$ C $^{\circ}$ +35 $^{\circ}$ C, R.H 25 $^{\circ}$ C $^{\circ}$ 75%)
7.2 Drop Test	To be no interference in operation after dropped to 1.0 cm steel plate 12 times from 1.5 meter height in state of JIG,JIG weight of 100 g, sensitivity should vary within ± 3 dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15 $^{\circ}$ C $^{\circ}$ +35 $^{\circ}$ C, R.H 25% $^{\circ}$ 75%)
7.3 Temperature Test	a) After exposure at +125°C for 200h, sensitivity should vary within $\pm 3dB$ from initial sensitivity. (The measurement to be done after 2h of conditioning at +15°C \sim +35°C, R.H 25% \sim 75%) b) After exposure at -40°C for 200h, sensitivity should vary within $\pm 3dB$ from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15°C \sim +35°C, R.H 25% \sim 75%)
7.4 Humidity Test	After exposure at +85°C and 85% relative humidity for 200 hours, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15°C \sim +35°C, R.H 25% \sim 75%)
7.5 Mechanical Shock Test	Then subject samples to three one-half sine shock pulses (3000 g for 0.3 milliseconds) in each direction (for six axes in total) along each of the three mutually perpendicular axes for a total of 18 shocks, sensitivity should vary within $\pm 3dB$ from initial sensitivity. (The measurement to be done after 2 hours of conditioning at ± 15 °C ± 435 °C, R.H ± 25 % ± 75 %)
7.6 Thermal Shock Test	After exposure at -40 $^{\circ}$ C for 30min, at +125 $^{\circ}$ C for 30min (change time 20 seconds) 32 cycles, sensitivity should vary within ±3dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15 $^{\circ}$ C $^{\circ}$ +35 $^{\circ}$ C, R.H 25% $^{\circ}$ 75%)
7.7 Reflow Test	Adopt the reflow curve of item 12.3, after three reflows, sensitivity should vary within $\pm 3dB$ from initial sensitivity. (The measurement to be done after 2 hours of conditioning at +15 $^{\circ}$ C $^{\circ}$ +35 $^{\circ}$ C, R.H 25 $^{\circ}$ C $^{\circ}$ 75%)
7.8 ESD Shock Test	Under C=150pF, R=330ohm. Tested to $\pm 2kV$ contact to I/O terminals.10 times. Grounding. Sensitivity should vary within $\pm 3dB$ from initial sensitivity. (The measurement to be done after 2 hours of conditioning at $\pm 15\% \sim \pm 35\%$, R.H.25% $\sim 75\%$)

8 Package

8.1 Tape Specification

The Dimensions as Follows:

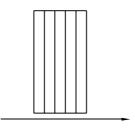
ITEM	W	E	F	ØD0	ØD1
DIM(mm)	12.0±0.30	1.75±0.10	5.5±0.05	1.50 ^{+0.10}	0.50±0.10
ITEM	P0	10P0	P1	Α0	В0
DIM(mm)	4.00±0.10	40.00±0.20	8.00±0.10	3.75±0.05	2.85±0.05
ITEM	К0	P2	Т		
DIM(mm)	1.30±0.10	2.00±0.05	0.30±0.05		

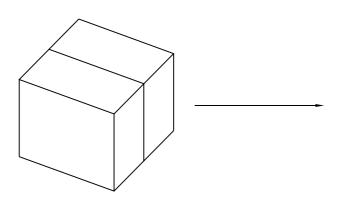


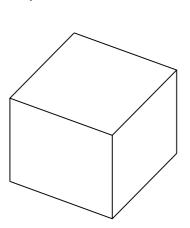
8.2 Reel Dimension

7" reel for sample stage

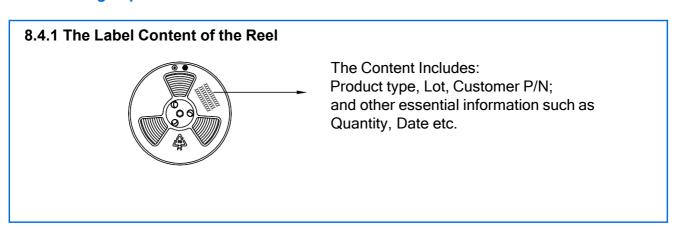
13" reel will be provided for the mass production stage

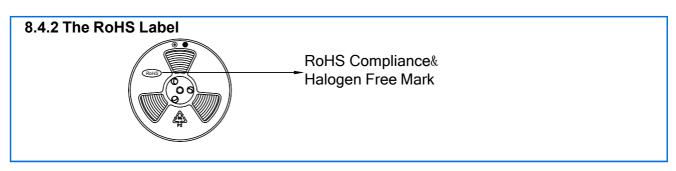

The following is 13" reel dimensions (unit:mm)


8.3 The Content of Box(13" reel)


Packing (5,000PCS)

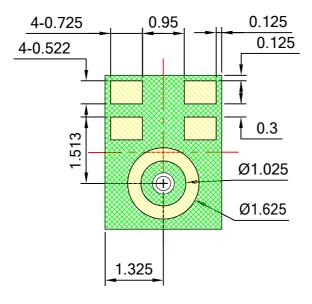
Inner Box(25,000PCS) (340mm×135mm×355mm)


Two Inner Box(50,000PCS)

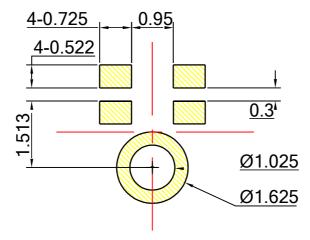


Outer Box(50,000PCS) (370mm×300mm×390mm)

8.4 Packing Explain


9 Storage and Transportation

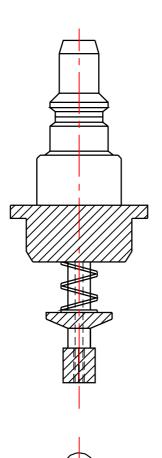
- **9.1** Keep MEMS MIC in warehouse with less than 75% humidity and without sudden temperature change, acid air, any other harmful air or strong magnetic field. Recommend storage period no more than 1 year and floor life(out of bag) at factory no more than 4 weeks.
- **9.2** The MEMS MIC with normal pack can be transported by ordinary conveyances. Please protect products against moist, shock, sunburn and pressure during transportation.
- 9.3 Storage Temperature Range : -40°C ~+70°C
- **9.4** Operating Temperature Range : $-40^{\circ}\text{C} \sim +100^{\circ}\text{C}$



10 Land Pattern Recommendation

10.1 The Pattern of MIC Pad(Unit:mm)

10.2 Recommended Soldering Surface Land Pattern (Unit:mm)

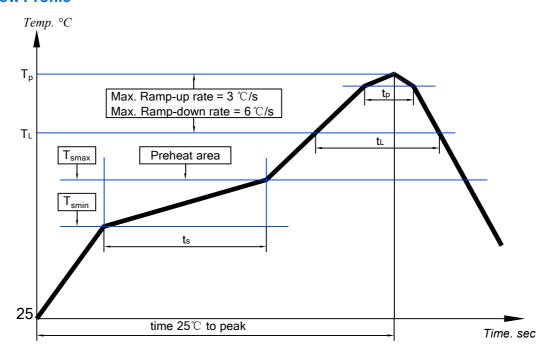


11 Soldering Recommendation

11.1 Soldering Machine Condition

Temperature Control	8 zones	
Heater Type	Hot Air	
Solder Type	Lead-free	

11.2 The Drawing and Dimension of Nozzle



Inside Diameter: 1.0mm;

Please don't vacuum over the acoustic port directly. Please don't blow the acoustic port directly.

11.3 Reflow Profile

Key Features of The Profile:

Average Ramp-up rate(T_{smax} to T_p)	3℃/s max.
Preheat : Temperature Min(T_{smin}) Temperature Max(T_{smax}) Time(T_{smin} to T_{smax})(t_s)	150℃ 200℃ 60~180s
Time maintained above : $Tempreature(T_L) \\ Time(t_L)$	217℃ 60~150s
Peak Temperature(T _p)	260℃
Time within $5^{\circ}\mathbb{C}$ of actual Peak Temperature(t_p) :	30~40s
Ramp-down rate(T _p to T _{smax})	6℃/s max
Time 25℃ to Peak Temperature	8min max

When MEMS MIC is soldered on PCB, the reflow profile is set according to solder paste and the thickness of PCB etc.

11.4 Rework

- (1) 250° C \sim 270 $^{\circ}$ C, maximum 30 sec, Peak temperature 330 $^{\circ}$ C.
- (2) Wind speed: 15L/m.
- (3) It is very important not to put a heatgun over the acoustic port of the microphone.

12 Cautions When Using MEMS MIC

12.1 Board Wash Restrictions

It is very important not to wash this silicon microphone, otherwise this could damage the microphone.

12.2 Sound Hole Protection

It is very important not to operate vacuum and air blow into sound hole(without any covering over sound holes), otherwise this could damage the microphone.

And it is necessary to be careful about foreign substances into sound hole inside silicon microphone.

12.3 Wire width Adaption

It is needed to adjust the dumping resistance according to the wire length and wire tod, etc. when using.

It is also necessary to insert dumping resistance in the Data line located adjacent to the microphone according to circumstances.

12.4 Ultrasonic Restrictions

It is very important not to use ultrasonic process. otherwise this could damage themicrophone.

13 Output Inspection Standard

Output inspection standard is executed according to <<ISO2859-1:1999>>.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MEMS Microphones category:

Click to view products by Goertek manufacturer:

Other Similar products are found below:

8103AC8333S25.00000X S-VM2020-C SPK0838HT4H-1 1007079-1 ASFLM1-25.000MHZ-C 5000AC-8E-25E0-25.000000X ICS-40180 ICS-40300 ICS-40618 ICS-43432 INMP504ACEZ-R7 INMP510ACEZ-R7 3807ACTC3-33EG-8.19200 501AAA27M0000CAF SIT9120AC-2C2-25E125.000000 SIT9120AC-2C2-25E200.000000 SIT9121AI-2C3-33E100.000000 SPU0410LR5H-QB 9120AI-2C3-25E100.00000 MP34DB01TR 8002AI-13-33E16.00000 5001AI-2D-18N0-20.000000 UC2000-30GM-IUR2-V15 MM034202-1 ICS-41350 ICS-40619 MM042602-4 PMM-3738-VM1010-R MP34DT06JTR ICS-52000 SPW0442HR5H-1 MM042602-5 MM033802-1 ICS-43434 ASFLM2-28.224MHZ-LR-T ICS-40310 ICS-40720 INMP404ACEZ-R7 INMP522ACEZ-R7 INMP621ACEZ-R7 9003AC-14-33EQ25.00000 SIT9120AC-2C2-33E125.000000 1618AA-13-33S-16.0000000G SPQ0410HE5H-PB SPU0414HR5H-SB-7 PMM-3738-VM1000-R CMM-2718AB-38108-TR CMM-2718AB-38308-TR CMM-2718AB-38316-TR CMM-2718AB-38316-TR