

PROFITEST MASTER Series PROFITEST MTECH+, MPRO, MXTRA, SECULIFE IP DIN VDE 0100/IEC 60364-6 Testers

3-349-646-03 32/2.18

Testing of residual current devices (RCCBs)

- Measurement of contact voltage without tripping the RCCB. Contact voltage is measured with reference to nominal residual current using 1/3 of the nominal residual current value.
- Testing for N-PE reversal
- Tripping test with nominal residual current, trip time measurement
- Testing of equipment and RCCBs with rising residual current including indication of tripping current and contact voltage
- Testing of RCCBs with nominal current of $\frac{1}{2} \bullet I_{\Delta N}$, $1 \bullet I_{\Delta N}$, $2 \bullet I_{\Delta N}$, $(5 \bullet I_{\Delta N} \text{ to } 300 \text{ mA: Mpro/Mxtra/SECULIFE IP to } 100 \text{ mA: Mtech+})$
- Intelligent ramp (PROFITEST MXTRA only): simultaneous measurement of breaking current I_{AN} and breaking time t_A
- Testing of selective S SRCDs, PRCDs (SCHUKOMAT, SIDOS or comparable), type G/R, type AC, type A, F; type B, B+ and type EV (exept MPRO)
- Testing of RCCBs which are suitable for pulsating residual direct current; testing is conducted with positive or negative half-waves.
- Creation of test sequences (ETC)
- Intelligent data transmission Bidirectional interface to DDS-CAD for electrical planning
- Simulation of operating states of electric vehicles at electric charging stations of different manufacturers (MTECH+ and MXTRA only)

Large Voltage and Frequency Ranges

A broad-range measuring device allows for use of the test instrument in all alternating and 3-phase electrical systems with voltages from 65 to 500 V and frequencies of 16 to 400 Hz.

Loop and Line Impedance Measurement

Measurement of loop and line impedance can be performed in the 65 to 500 V range. Conversion to short-circuit current is based on the respective nominal line voltage, insofar as the measured line voltage is within the specified range. PROFITEST MAS-TER measuring error is also taken into account for conversion. Outside of this range, short-circuit current is calculated on the basis of momentary line voltage and measured impedance.

Measurement of Insulation Resistance Using Nominal Voltage, with Variable or Rising Test Voltage

Insulation resistance is usually measured with a nominal voltages of 500, 250 or 100 V. A test voltage which deviates from nominal voltage, and lies within a range of 20/50 to 1000 V, can be selected for measurements at sensitive components, as well as systems with voltage limiting devices.

Measurement can be performed with a constantly rising test voltage in order to detect weak points in the insulation and determine tripping voltage for voltage limiting devices.

Voltage at the device under test and any triggering/breakdown voltage appear at the test instrument's display.

Standing-Surface Insulation Measurement

Standing-surface insulation measurement is performed with momentary line frequency and line voltage.

Low-Resistance Measurement

Bonding conductor resistance and protective conductor resistance can be measured with a test current of \geq 200 mA DC, automatic polarity reversal of the test voltage and selectable direction of current flow. If the adjustable limit value is exceeded, an LED lights up.

Earthing Resistance Measurement

In addition to measurement of the overall resistance of an earthing system, selective measurement of the earthing resistance of an individual earth electrode is also possible, without having to disconnect it from the earthing system. A current clamp sensor available as an accessory is utilized to this end.

Furthermore, the PROFITEST MPRO and the PROFITEST MXTRA allow for battery powered earthing resistance measurements: 3/4-pole and earth loop resistance measurements.

Universal Connector System

The interchangeable plug inserts and 2-pole plug-in adapter – which can be expanded to 3-poles for phase sequence testing – allows for use of the test instrument all over the world.

Special Features

- · Display of approved fuse types for electrical systems
- Energy meter start-up testing
- Measurement of biasing, leakage and circulating current of up to 1 A, as well as working current of up to 1000 A with current clamp sensor (available as an accessory)
- Phase sequence measurement (including highest line-to-line voltage)

Display with Selectable Language

The LCD panel consists of a backlit dot matrix at which menus, setting options, measurement results, tables, instructions and error messages, as well schematic diagrams appear.

The display can be set to the desired language depending on the country in which the test instrument is used: D, GB, I, F, E, P, NL, S, N, FIN, CZ or PL

Operation

Device functions are selected directly with the help of a rotary selector knob. Softkeys allow for convenient selection of subfunctions and parameter settings. Unavailable functions and parameters are automatically prevented from appearing at the display.

The start and RCD tripping functions included directly on the instrument are identical to the functions of the two keys located on the test plug, allowing for easy measurement at difficult to access locations.

Schematic diagrams, measuring ranges and help texts cab be displayed for all basic functions and sub-functions.

Phase Tester

Protective conductor potential is tested after starting a test sequence and touching the contact surface for finger contact. The PE symbol appears at the display if a potential difference of more than 25 V is detected between the contact surface and the protective contact at the mains plug.

Error Indication

- The instrument automatically detects instrument-to-system con-• nection errors, which are indicated in a connection pictograph.
- Errors within the electrical system (no mains or phase voltage, tripped RCD) are indicated at 3 LEDs and by means of popup windows at the tilting LCD panel.

Battery Monitoring and Self-Test

Battery monitoring is conducted while the instrument is subjected to an electrical load. Results are displayed both numerically and with a symbol. Test images can be called up one after the other, and LEDs can be tested during the self-test. The instrument is shut down automatically when the rechargeable batteries are discharged. A microprocessor controlled charging circuit is used to assure safe charging of rechargeable NiMH or NiCd batteries.

Data Entry at the RS 232 Port

Data can be read in via a barcode or RFID scanner connected to the RS 232 port, and comments can be entered with the help of the softkeys.

ETC User Software for PC

ETC offers a wide variety of support options for data acquisition and management.

- Amongst other things, the software acquires all important data for reports in accordance with DIN VDE 0100, part 600.
- Test reports (ZVEH) can be generated automatically.
- Distribution structures with electrical circuit and RCD data can be individually defined.
- Created structures can be saved to memory and loaded to the test instrument as required via the USB port.
- Data can be exported to Excel, CSV and XML formats.
- Device selection lists can be edited.

Overview of Features Included with PROFITEST MASTER & SECULIEE IP Device Variants

PROFITEST (Article Number)	2	± 🕯	- (J	U)
	Mpro (M520N)	Mtech+ (M520R)	MXTRA (M520P)	SECULIFE (M520U)
Testing of residual current devices (RCDs)				
U _B measurement without tripping RCD	1	1	1	1
Tripping time measurement	1	1	1	· ·
Measurement of tripping current I _F	1	1	1	1
Selective, SRCDs, PRCDs, type G/R	1	1	1	1
AC/DC sensitive RCDs, type B, B+	_	1	1	1
Testing of IMDs	_		1	1
Testing of RCMs	_		1	_
Testing for N-PE reversal	1	1	1	1
Measurement of loop impedance Z _{L-PE} / Z _{L-}				
Fuse table for systems without RCDs	·N ✓	1	1	1
Without tripping the RCD, fuse table	-	· /	· /	· /
With 15 mA test current ¹⁾ without tripping the RCD	1	✓ ✓	✓ ✓	✓ ✓
Earthing resistance R_F (mains operation)	v	V	v	V
I-U measuring method (2/3-wire measuring method	1	1	1	1
via measuring adapter: 2-wire/2-wire + probe)			· ·	
Earthing resistance R _E (battery operation)				
3 or 4-wire measurement via PRO-RE adapter	1			
Soil resistivity ρ_{F} (battery operation)	,			
(4-wire measurement via PRO-RE adapter)	1			_
Selective earthing resistance R _E (mains opera-				
tion) with 2-pole adapter, probe, earth electrode and	1	1	1	1
current clamp sensor (3-wire measuring method)				
Selective earthing resistance R_E (battery operation)				
with probe, earth electrode and current clamp	1		1	_
sensor (4-wire measuring method via PRO-RE				
adapter and current clamp sensor)				
Earth loop resistance R _{ELOOP} (battery operation) with 2 clamps (current clamp sensor direct	1		1	
and current clamp transformer via PRO-RE/2 adapter)	v		, v	
Measurement of equipotential bonding R_{LO} ,	_			
automatic polarity reversal	1	~		~
Insulation resistance R _{ISO} ,	,	,		,
variable or rising test voltage (ramp)	1		-	~
Voltage U _{L-N} / U _{L-PE} / U _{N-PE} / f	1	1	1	1
Special measurements				
Leakage current (with clamp) IL, IAMP	1	1	1	1
Lourage our ferr (with blainp) II, IAMP	v 🗸			
	✓ ✓	· ✓	1	1
Phase sequence			✓ ✓	√ √
	1	1	_	
Phase sequence Earth leakage resistance $R_{E(ISO)}$ Voltage drop (ΔU)	\ \	✓ ✓	1	1
$\begin{array}{l} \mbox{Phase sequence} \\ \mbox{Earth leakage resistance $R_{E(ISO)}$} \\ \mbox{Voltage drop } (\Delta U) \\ \mbox{Standing-surface insulation Z_{ST}} \end{array}$	\ \ \		\ \	√ √
Phase sequence Earth leakage resistance $R_{E(ISO)}$ Voltage drop (ΔU)	\ \ \ \ \	\ \ \ \ \	\ \ \	√ √
$\begin{array}{l} \mbox{Phase sequence} \\ \mbox{Earth leakage resistance $R_{E(ISO)}$} \\ \mbox{Voltage drop } (\Delta U) \\ \mbox{Standing-surface insulation Z_{ST}} \\ \mbox{Meter start-up (kWh-Test)} \end{array}$	\ \ \ \ \	\ \ \ \ \	\ \ \ \	✓ ✓ ✓ ─
$\begin{array}{l} \mbox{Phase sequence} \\ \mbox{Earth leakage resistance $R_{E(ISO)}$} \\ \mbox{Voltage drop } (\Delta U) \\ \mbox{Standing-surface insulation Z_{ST}} \\ \mbox{Meter start-up (kWh-Test)} \\ \mbox{Leakage current with PRO-AB adapter (IL)} \end{array}$	\ \ \ \ \	\ \ \ \ \	\ \ \ \ \ \ \ \	✓ ✓ ✓ ─
$\begin{array}{l} \mbox{Phase sequence} \\ \mbox{Earth leakage resistance $R_{E(ISO)}$} \\ \mbox{Voltage drop } (\Delta U) \\ \mbox{Standing-surface insulation Z_{ST}} \\ \mbox{Meter start-up (kWh-Test)} \\ \mbox{Leakage current with PRO-AB adapter (IL)} \\ \mbox{Residual voltage test (Ures)} \end{array}$		\ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \	✓ ✓ ✓ ─
$\begin{array}{l} \mbox{Phase sequence} \\ \mbox{Earth leakage resistance $R_{E(ISO)}$} \\ \mbox{Voltage drop (ΔU)$} \\ \mbox{Voltage drop (ΔU)$} \\ \mbox{Standing-surface insulation Z_{ST}} \\ \mbox{Meter start-up (kWh-Test)$} \\ \mbox{Leakage current with PRO-AB adapter (IL)$} \\ \mbox{Residual voltage test (Ures)$} \\ \mbox{Intelligent ramp (ta + ΔI)$} \\ \mbox{Electric vehicles at charging stations (IEC 61851)$} \\ \mbox{Report generation of fault simulations on} \end{array}$				✓ ✓ ✓ ─
$\begin{array}{l} \mbox{Phase sequence} \\ \mbox{Earth leakage resistance $R_{E(ISO)}$} \\ \mbox{Voltage drop (ΔU)$} \\ \mbox{Standing-surface insulation Z_{ST}} \\ \mbox{Meter start-up (kWh-Test)} \\ \mbox{Leakage current with PRO-AB adapter (IL)} \\ \mbox{Residual voltage test (Ures)} \\ \mbox{Intelligent ramp (ta + ΔI)$} \\ \mbox{Electric vehicles at charging stations (IEC 61851)} \end{array}$			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	✓ ✓ ✓ ─
$\begin{array}{l} \mbox{Phase sequence} \\ \mbox{Earth leakage resistance $R_{E(ISO)}$} \\ \mbox{Voltage drop (ΔU)$} \\ \mbox{Voltage drop (ΔU)$} \\ \mbox{Standing-surface insulation Z_{ST}} \\ \mbox{Meter start-up (kWh-Test)$} \\ \mbox{Leakage current with PRO-AB adapter (IL)$} \\ \mbox{Residual voltage test (Ures)$} \\ \mbox{Intelligent ramp (ta + ΔI)$} \\ \mbox{Electric vehicles at charging stations (IEC 61851)$} \\ \mbox{Report generation of fault simulations on} \end{array}$				✓ ✓ ✓ ─
Phase sequence Earth leakage resistance R _{E(ISO)} Voltage drop (ΔU) Standing-surface insulation Z _{ST} Meter start-up (kWh-Test) Leakage current with PRO-AB adapter (IL) Residual voltage test (Ures) Intelligent ramp (ta + ΔI) Electric vehicles at charging stations (IEC 61851) Report generation of fault simulations on PRCDs with PROFITEST PRCD adapter				✓ ✓ ✓ ─
$\label{eq:phase sequence} \end{tabular} \begin{tabular}{lllllllllllllllllllllllllllllllllll$			J J J J J J J J J J J J J J J	
$\begin{array}{l} \mbox{Phase sequence} \\ \mbox{Earth leakage resistance $R_{E(ISO)}$} \\ \mbox{Voltage drop (ΔU)$} \\ \mbox{Voltage drop (ΔU)$} \\ \mbox{Standing-surface insulation Z_{ST}} \\ \mbox{Meter start-up (kWh-Test)$} \\ \mbox{Leakage current with PRO-AB adapter (IL)$} \\ \mbox{Residual voltage test (Ures)$} \\ \mbox{Intelligent ramp (ta + ΔI)$} \\ \mbox{Electric vehicles at charging stations (IEC 61851)$} \\ \mbox{Report generation of fault simulations on PRCDs with PROFITEST PRCD adapter$} \\ \mbox{Features} \\ \\ \mbox{Selectable user interface language 2} \\ \mbox{Memory (database for up to 50,000 objects)} \end{array}$		 ✓ ✓<	J J	
$\label{eq:phase sequence} \begin{array}{l} \mbox{Phase sequence} \\ \mbox{Earth leakage resistance $R_{E(ISO)}$} \\ \mbox{Voltage drop (ΔU)$} \\ \mbox{Voltage drop (ΔU)$} \\ \mbox{Standing-surface insulation Z_{ST}} \\ \mbox{Meter start-up (kWh-Test)} \\ \mbox{Leakage current with PRO-AB adapter (IL)} \\ \mbox{Residual voltage test (Ures)} \\ \mbox{Intelligent ramp (ta + ΔI)$} \\ \mbox{Intelligent ramp (ta + ΔI)$} \\ \mbox{Electric vehicles at charging stations (IEC 61851)} \\ \mbox{Report generation of fault simulations on} \\ \mbox{PRCDs with PROFITEST PRCD adapter} \\ \hline \\ \mbox{Features} \\ \mbox{Selectable user interface language 2} \\ \mbox{Memory (database for up to 50,000 objects)} \\ \mbox{Automatic test sequence function} \\ \end{array}$			J J	
$\label{eq:phase sequence} \begin{tabular}{lllllllllllllllllllllllllllllllllll$			J J	
$\label{eq:phase sequence} \begin{tabular}{lllllllllllllllllllllllllllllllllll$				
$\label{eq:phase sequence} \begin{tabular}{lllllllllllllllllllllllllllllllllll$			J J	
$\label{eq:phase sequence} \begin{tabular}{lllllllllllllllllllllllllllllllllll$				

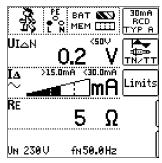
¹ So-called live measurement is only advisable if there is no bias current within the system. Only suitable for motor circuit breaker with low nominal current.

² Currently available languages: D, GB, I, F, E, P, NL, S, N, FIN, CZ, PL

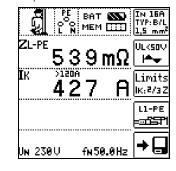
Data Interface

Measurement data are transmitted to a PC via the integrated USB port, at which they can be printed in report form and archived.

Software update


The test instrument is always kept current thanks to firmware which can be updated via the USB port. Software is updated during the course of recalibration by our service department, or directly by the customer.

Sample Displays


PROFITEST MASTER and SECULIFE IP Test Instruments

Softkeys allow for convenient selection of sub-functions and parameter settings. Unavailable sub-functions and parameters are automatically prevented from appearing at the display.

RCD Measurement

Loop Resistance Measurement

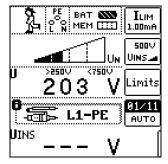
Low-Resistance Measurement

3

0.07 Ω +

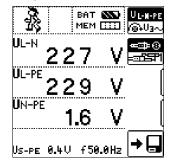
BAT 🔊 MEM 🛄 <1.00Ω

TYP


⊡→PE Limits

ROFFSET ON OFF

Earthing Resistance Measurement


- ^{BE} -		₩	RANGE 10Ω
RE(3 8)) <1 — — —	Ω	SEL 1872 UL (SBU)
RE(736,)	·	Ω	Limits
8	: 17/	A)	mains~
J	∪ f -	Hz	[

Insulation Measurement

RLO

Roffset

The above sample displays are taken from the PROFITEST MTECH+ instruments.

Applicable Regulations and Standards

IEC 61010-1 / EN 61010-1/ VDE 0411-1	Safety requirements for electrical equipment for mea- surement, control and laboratory use Part 1: General requirements (IEC 61010-1:2010 + Cor. :2011) Part 31: Safety requirements for hand-held probe as- semblies for electrical measurement and test (IEC 61010-031:2002 + A1:2008)
IEC 61557/ EN 61557/ VDE 0413	 Part1: General requirements (IEC 61557-1:2007) Part 2: Insulation resistance (IEC 61557-2:2007) Part 3: Loop impedance (IEC 61557-3:2007) Part 4: Resistance of earth connection and equipotential bonding (IEC 61557-4:2007) Part 5: Resistance to earth (IEC 61557-5:2007) Part 6: Effectiveness of residual current devices (RCD) in TT, TN and IT systems (IEC 61557-6:2007) Part 7: Phase sequence (IEC 61557-7:2007) Part 7: Phase sequence (IEC 61557-7:2007) Part 10:Electrical safety in low voltage distribution systems up to 1000 V AC and 1500 V DC – Equipment for testing, measuring or monitoring of protective measures (IEC 61557-10:2000) Part 11:Effectiveness of residual current monitors (RCMs) type A and type B in TT, TN and IT systems (IEC 61557-11:2009) (PROFITEST MXTRA only)
EN 60529 VDE 0470, part 1	Test instruments and test procedures Degrees of protection provided by enclosures (IP code)
DIN EN 61 326-1 VDE 0843-20-1	Electrical equipment for measurement, control and labo- ratory use – EMC requirements – Part 1: General requirements
IEC 60364-6-61 VDE 0100, part 600	Low-voltage electrical installations – Part 6: Tests
IEC 60364-6-62 EN 50110-1 VDE 0105, part 100	Operation of electrical installations – Part 100: General requirements
IEC 60364-7-710 VDE 0100, part 710	Erection of low-voltage installations – Requirements for special installations or locations – Part 710: Medical locations
IEC 61851-1 Din en 61851-1	Electric vehicle conductive charging system – Part 1: General requirements

Characteristic Values

Nominal Ranges of Use

Voltage U_N

	230 V (196 253 V)
	400 V (340 440 V)
Frequency f _N	16 ² / ₃ Hz (15.4 18 Hz)
	50 Hz (49.5 50.5 Hz)
	60 Hz (59.4 60.6 Hz)
	200 Hz (190 210 Hz)
	400 Hz (380 420 Hz)
Overall voltage range	65 550 V
Overall frequency range	15.4 420 Hz
Waveform	sine
Temperature range	0° C + 40° C
Battery voltage	8 12 V
Line impedance angle	Corresponds to $\cos \varphi = 1 \dots 0.95$
Probe resistance	< 50 kΩ

120 V

(108 ... 132 V)

Characteristic Values PROFITEST MTECH+

				Input							Con	nectio	ons			
Func- tion	Measured Quantity	Display Range	Reso- lution	Impedance/ Test Current	Measuring Range	Nominal Values	Measuring Uncertainty	Intrinsic Uncertainty	Plug Insert 1	2-Pole Adapter	3-Pole Adapter	Probe	WZ12C	ClampS Z3512A		
	U _{L-PE} U _{N-PE}	0 99.9 V 100 600 V	0.1 V 1 V		0.3 600 V ¹⁾		±(2% rdg.+5d) ±(2% rdg.+1d)	±(1% rdg.+5d) ±(1% rdg.+1d)	•	•	•					
	f	15.0 99.9 Hz 100 999 Hz	0.1 Hz 1 Hz		DC 15,4 420 Hz		±(0.2% rdg.+1d)	±(0.1% rdg.+1d)								
U	U _{3~}	0 99.9 V 100 600 V	0.1 V 1 V	$5 M\Omega$	0.3 600 V	400/500 V $f_N = 16^2/_3/50/$	±(3% rdg.+5d) ±(3% rdg.+1d)	\pm (2% rdg.+5d) \pm (2% rdg.+1d)			•					
	U _{PROBE}	0 99.9 V 100 600 V	0.1 V 1 V		1.0 600 V	60/200/400 Hz	±(2% rdg.+5d) ±(2% rdg.+1d)	\pm (1% rdg.+5d) \pm (1% rdg.+1d)								
	U _{L-N}	0 99.9 V 100 600 V	0.1 V 1 V		1.0 600 V ¹		±(3% rdg.+5d) ±(3% rdg.+1d)	±(2% rdg.+5d) ±(2% rdg.+1d)								
	$U_{I\Delta N}$	0 70.0 V	0.1 V	0.3 · I _{ΔN}	5 70 V		+10% rdg.+1d	+1% rdg1d +9% rdg.+1d								
		10 Ω 999 Ω 1.00 kΩ 6.51 kΩ 3 Ω 999 Ω				U _N = 120 V										
	R _E	1 kΩ 2.17 kΩ 1Ω 651 Ω 0.3 Ω 99.9 Ω	0.01 kΩ 1Ω 0.1 Ω	$I_{\Delta N} = 30 \text{ mA} \cdot 1,05$ $I_{\Delta N} = 100 \text{ mA} \cdot 1,05$	calculated value from U _{IAN} / I _{AN}	230 V 400 V ²										
I _{an}		$\begin{array}{c} 100 \ \Omega \ \dots \ 217 \ \Omega \\ 0.2 \ \Omega \ \dots \ 9.9 \ \Omega \\ 10 \ \Omega \ \dots \ 130 \ \Omega \end{array}$	1 Ω 0.1 Ω 1 Ω	$I_{\Delta N}$ =300 mA · 1,05 $I_{\Delta N}$ =500 mA · 1,05		$f_N = 50/60 \text{ Hz}$										
	$I_F (I_{\Delta N} = 6 \text{ mA})$	1.8 7.8 mA	1 32	1.8 7.8 mA	1.8 7.8 mA	U _L = 25/50 V						optio				
IF_	$I_{F} (I_{\Delta N} = 10 \text{ mA})$ $I_{F} (I_{\Delta N} = 30 \text{ mA})$	3.0 13.0 mA 9.0 39.0 mA	0,1 mA	3.0 13.0 mA 9.0 39.0 mA	3.0 13.0 mA 9.0 39.0 mA	$I_{\Delta N} = 6 \text{ mA}$	±(5% rdg.+1d)	±(3.5% rdg.+2d)				nal				
	$I_{F} (I_{\Delta N} = 100 \text{ mA})$ $I_{F} (I_{\Delta N} = 300 \text{ mA})$	30 130 mA 90 390 mA	1 mA 1 mA	30 130 mA 90 390 mA	30 130 mA 90 390 mA	10 mA 30 mA	_(_(
	$\begin{array}{l} I_{\rm F} \left(I_{\Delta \rm N} = 500 \text{ mA} \right) \\ U_{\rm I\Delta} / U_{\rm L} = 25 \text{ V} \\ U_{\rm I\Delta} / U_{\rm L} = 50 \text{ V} \end{array}$	150 650 mA 0 25.0 V 0 50.0 V	1 mA 0.1 V	150 650 mA wie I $_{\Delta}$	150 650 mA 0 25.0 V 0 50.0 V	100 mA 300 mA 500 mA ²	+10% rdg.+1d	+1% rdg1d +9% rdg.+1 d	-							
	$\begin{array}{c} \begin{array}{c} t_{A} (l_{\Delta N} \cdot 1) \\ \hline t_{A} (l_{\Delta N} \cdot 2) \\ \hline t_{A} (l_{\Delta N} \cdot 5) \end{array}$	0 1000 ms 0 1000 ms 0 40 ms	1 ms	6 500 mA 2 · 6 2 · 500 mA 5 · 6 5 · 300 mA	0 1000 ms 0 1000 ms 0 40 ms		±4 ms	±3 ms								
			1 1113	5 05 500 IIIA	0.15 0.49 Ω	$I_{\rm b} = 120/230$ V	±(10% rdg.+ 30d)	+(5% rda + 30d)								
	$Z_{L-PE} (\bigcirc Z_{L-N})$	0 999 mΩ 1.00 9.99 Ω	1 mΩ 0.01 Ω		0.50 0.99 Ω 1.00 9.99 Ω	400/500 V ¹	±(10% rdg.+ 30d) ±(5% rdg.+ 3d)		_							
	Z _{L-PE} + DC	0 999 mΩ 1.00 9.99 Ω 10.0 29.9 Ω	0.1 Ω	1.3 3.7 A AC 0.5/1.25 A DC	1.00 9.99 Ω	U _N = 120/230 V f _N = 50/60 Hz	±(18% rdg.+30d) ±(10% rdg.+3d)	\pm (6% rdg.+50d) \pm (4% rdg.+3d)								
	$I_{K}(Z_{L-PE} \frown, Z_{L-PE} \frown + DC)$	0 9.9 A 10 999 A 1.00 9.99 kA	0,1 A 1 A 10 A		120 (108 132) V 230 (196 253) V 400 (340 440) V		calculated val	ue from Z _{L-PE}	•	• Z _{L-PE}						
-L-N		10.0 50.0 kA 0.5 9.99 Ω	100 A 0.01 Ω		500 (450 550) V	only display range			_							
	Z _{L-PE} (15 mA)	10.0 99.9 Ω 100 999 Ω	0.1 Ω 1 Ω		10 100 Ω 100 1000 Ω	U _N = 120/230 V	±(10% rdg.+10D)	±(2% rdg.+2D) ±(1% rdg.+1D)	_							
	I _K (15 mA)	100 999 mA 0.00 9.99 A 10.0 99.9 A	1 mA 0.01 A 0.1 A	15 mA AC	on U _N and Z_{L-PE} : $I_{K}=U_{N}/101000\Omega$	$f_N = 16^2 / \frac{3}{3} / 50 / 60 \text{ Hz}$	calculated value fr $I_{\rm K} = U_{\rm N}/Z_{\rm L}$	_{PE} (15 mA)								
	R _E (with probe)	0 999 mΩ 1.00 9.99 Ω 10.0 99.9 Ω	1 mΩ 0,01 Ω 0,1 Ω	1.3 3.7 A AC 1.3 3.7 A AC	$\begin{array}{c} 0.15 \ \Omega \ \ 0.49 \ \Omega \\ 0.50 \ \Omega \ \ 0.99 \ \Omega \\ 1.0 \ \Omega \ 9.99 \ \Omega \end{array}$	$U_{\rm N} = 120/230 \text{ V}$ $U_{\rm N} = 400 \text{ V}^{-1}$	±(10% rdg.+30d) ±(10% rdg.+30d) ±(5% rdg.+3d)	±(4% rdg.+30d) ±(3% rdg.+3d)								
R _E	[R _E (without probe) values as Z _{L-PE}]	10.0 999 Ω 100 999 Ω 1 kΩ 9.99 kΩ	1 Ω 0.01 kΩ	400 mA AC 40 mA AC 4 mA AC	10 Ω99.9 Ω 100 Ω999 Ω 1 kΩ9.99 kΩ	$f_N = 50/60 \text{ Hz}$	±(10% rdg.+3d) ±(10% rdg.+3d) ±(10% rdg.+3d)	±(3% rdg.+3d) ±(3% rdg.+3d) ±(3% rdg.+3d)	•	•						
	R _E DC+	0 999 mΩ 1.00 9.99 Ω 10.0 29.9 Ω	1 mΩ 0.01 Ω 0.1 Ω	1.3 3.7 A AC 0.5/1.25 A DC	0.25 0.99 Ω 1.00 9.99 Ω		±(18% rdg.+ 30d) ±(10% rdg. + 3d)	±(6% rdg.+50D) ±(4% rdg.+3D)								
	U _E	0 253 V	1 V	—	calculated value]							
R _E Sel clip	R _E	0999 Ω	1 mΩ 1 Ω 1 mΩ	1.3 3.7 A AC 0.5/1.25 A DC	0.25 300 Ω ⁵⁾	see R _E U _N = 120/230 V	±(20% rdg.+ 20 d)		-					•		
EX-	R _E DC+	0 999 Ω	1Ω			f _N = 50/60 Hz	\pm (22% rdg.+20 d) \pm (20% rdg.+2d)									
TRA	Z _{ST}	0 30 MΩ	1 kΩ	2.3 mA at 230 V	10 kΩ 199 kΩ 200 kΩ 30 MΩ	$\boldsymbol{U}_0 = \boldsymbol{U}_{L\text{-}N}$	±(20% rdg.+2d) ±(10% rdg.+2d)	±(10% rdg.+3d) ±(5% rdg.+3d)								

											Coi	nnectio			
Func- tion	Measured Quantity	Display Range	Reso- lution		Measuring Range	Nominal Values	Measuring Uncertainty	Intrinsic Uncertainty	Plug Insert 1	2-Pole Adapter	3-Pole Adapter	WZ12C	Clar Z3512A		CP1100
R _{INS}		1 999 kΩ 1.00 9.99 MΩ 10.0 49.9 MΩ	1 kΩ 10 kΩ 100 kΩ		-	$U_N = 50 V$ $I_N = 1 mA$									
		1 999 kΩ 1.00 9.99 MΩ 10.0 99.9 MΩ	1 kΩ 10 kΩ 100 kΩ			$\begin{array}{c} U_N = 100 \text{ V} \\ I_N = 1 \text{ mA} \end{array}$	$k\Omega$ range $\pm (5\% rdq. + 10d)$	$k\Omega$ range ±(3% rdq.+10d)							
	R _{INS} . R _{E INS}	1 999 kΩ 1.00 9.99 MΩ 10.0 99.9 MΩ 100 200 MΩ	1 kΩ 10 kΩ 100 kΩ 1 MΩ	I _K = 1.5 mA	50 kΩ 500 MΩ	U _N = 250 V I _N = 1 mA	M Ω range	$M\Omega$ range ±(3% rdg.+1d)	•	•					
		1 999 kΩ 1.00 9.99 MΩ 10.0 99.9 MΩ 100 500 MΩ	1 kΩ 10 kΩ 100 kΩ 1 MΩ			$U_{N} = 500 \text{ V/}$ 1000 V $I_{N} = 1 \text{ mA}$	Ť								
	U	10 999 V– 1.00 1.19 kV	1 V 10 V		10 1.19 kV		±(3% rdg.+1d)	±(1.5% rdg.+1d)							
R _{L0}	R _{LO}	0.01 Ω 9.99 Ω 10.0 Ω 99.9 Ω		l _m ≥ 200 mA I _m < 200 mA	0.1 Ω 5.99 Ω 6.0 Ω 100 Ω	$U_0 = 4.5 V$	±(4% rdg.+2d)	±(2% rdg.+2d)							
				Transforma- tion ratio ³			5	5							
		0.0 99.9 mA	0.1 mA				±(13% rdg.+5d)	±(5% rdg.+4d)							
	-	100 999 mA	1 mA	1 V/A	5 15 A							I 15A			
		1.00 9.99 A	0.01 A	1 1/7	5 15 A		±(13% rdg.+1d)	±(5% rdg.+1d)				IIJA			
		10.0 15.0 A	0.1 A			f _N = 50/60 Hz									
		1.00 9.99 A	0.01 A				±(11% rdg.+4d)	±(4% rdg.+3d)							
		10.0 99.9 A	0.1 A	1 mV/A	5 150 A		±(11% rdg.+1d)	±(4% rdg.+1d)				II 150A			
		100 150 A	1 A				,	,							
		0.0 99.9 mA	0.1 mA	1 V/A	5 1000 mA		±(7% rdg.+2 d)	,	_				1 A		
		100 999 mA	1 mA			-	±(7% rdg.+1 d)	±(5% rdg.+1 d)						-	
		0.00 9.99 A	0.01 A	100 mV/A	0.05 10 A	f _N =	±(3.4% rdg.+2 d)	(0)					10 A	-	
		0.00 9.99 A	0.01 A	10 mV/A	0.5 100 A	f _N = 16.7/50/60/	±(3.1% rdg.+2 d)						100 A		
SEN-		10.0 99.9 A	0.1 A			200/400 Hz	$\pm (3.1\% \text{ rdg.} + 1 \text{ d})$,						-	
SOR	L a	0.00 9.99 A 10.0 99.9 A	0.01 A 0.1 A	1 mV/A	5 1000 A		$\pm (3.1\% \text{ rdg.}+1 \text{ d})$ $\pm (3.1\% \text{ rdg.}+2 \text{ d})$,	-				1000A		
6	I _{L/Amp}	100 999 A	1 A	T IIIW/A	5 1000 A		$\pm (3.1\% \text{ rdg.} \pm 2 \text{ d})$ $\pm (3.1\% \text{ rdg.} \pm 1 \text{ d})$		_				TUUUA		
7		0.0 99.9 mA	0.1 mA				$\pm(27\% \text{ rdg.}+100 \text{ d})$,						0.03	
		100 999 mA		1 V/A	30 1000 mA		, ,		-					3	-
		100 999 IIIA	1 mA			-	±(27% rdg.+11 d)		_						-
		0.00 9.99 A	0.01 A 0.01 A	100 mV/A	0.3 10 A	$f_{\rm N}=50/60~{\rm Hz}$	±(27% rdg.+12 d) ±(27% rdg.+11 d)	±(3% rdg.+11 d)						0.3 30	-
		0.00 9.99 A	0.01 A	10 mV/A	3 100 A		±(27% rdg.+100 d)	±(3% rdg.+100 d)						3]
		10.0 99.9 A	0.1 A	TO IIIWA	3 100 A		±(27% rdg.+11 d)	±(3% rdg.+11 d)						300]
		0.00 9.99 A	0.01 A	10 m\//A	0.5 100.4		±(5% rdg.+12 d)	±(3% rdg.+12 d)							100A
		10.0 99.9 A	0.1 A	10 mV/A	0.5 100 A	f _N =	±(5% rdg.+2 d)	±(3% rdg.+2 d)	1						~
		0.00 9.99 A	0.01 A			f _N = DC/16.7/50/60/	±(5% rdg.+50 d)	±(3% rdg.+50 d)	1						10004
		10.0 99.9 A	0.1 A	1 mV/A	5 1000 A	200 Hz	±(5% rdg.+7 d)	±(3% rdg.+7 d)	1						1000A
		100 999 A	1 A				±(5% rdg.+2 d)	±(3% rdg.+2 d)	1						~

 1 U > 253 V, with 2 or 3-pole adapter only

2

 4 at R_{Eselekti}/R_{Egesamt} < 100 5 the indicated measuring and intrinsic uncertainties already include the uncertainties of the respective current clamp.

Measuring range of the signal input at the test instrument U_E: 0 ... 1.0 V_{eff} (0 ... 1.4 Vpeak) AC/DC 6

 7 Input impedance of signal input at the test instrument: 800 k Ω 8 for $f_N <$ 45 Hz => U_N < 253 V 7

Key: D = digits, rdg. = measured value (reading)

Characteristic Values PROFITEST MPRO, MXTRA & SECULIFE IP

	Mossing		Deet	Input	Mossing	Nomi	Massing	Int			Con	nectior			
Func- tion	Measured Quantity	Display Range	Reso- lution	Impedance / Test Current	Measuring Range	Nominal Values	Measuring Uncertainty	Intrinsic Uncertainty	Plug Insert ¹	2-Pole Adapter	3-Pole Adapter	Probe		Clamp Z3512A	
	U _{L-PE}	0 99.9 V	0.1 V		0.3 600 V ¹		±(2% rdg.+5d)	±(1% rdg.+5d)							
	U _{N-PE}	100 600 V 15.0 99.9 Hz	1 V 0.1 Hz	-		U _N = 120 V	, ,	±(1% rdg. + 1 d)	•	•	•				
	f	100 999 Hz	1 Hz	_	DC 15.4 420 Hz	230 V		±(0.1% rdg. + 1 d)							
U	U _{3~}	0 99.9 V 100 600 V	0.1 V 1 V	$5 M\Omega$	0.3 600 V	400 V 500 V	\pm (3% rdg.+5d) +(3% rdg. + 1 d)	\pm (2% rdg.+5d) \pm (2% rdg. + 1 d)			•				
	U _{Probe}	0 99.9 V	0.1 V	-	1.0 600 V	-	±(2% rdg.+5d)	±(1% rdg.+5d)				•			
		100 600 V 0 99.9 V	1 V 0.1 V	-		f _N = 16 ² / ₃ /50/ 60/200/400 Hz	$\pm (2\% \text{ rdg.} + 1 \text{ d})$ $\pm (3\% \text{ rdg.} + 5\text{d})$	$\pm (1\% \text{ rdg.} + 1\text{d})$ $\pm (2\% \text{ rdg.} + 5\text{d})$		-		-	-		
	U _{L-N}	100 600 V	1 V		1.0 600 V ¹			±(2% rdg. + 1 d)	•		•				
	U _{IAN}	0 70.0 V	0.1 V	$0.3 \cdot I_{\Delta N}$	5 70 V	U _N = 120 V	+10% rdg. + 1 d	+1% rdg1d +9% rdg. + 1 d							
		10 Ω 999 Ω	1 Ω 0.01 kΩ	$I_{\Delta N} = 10 \text{ mA} \cdot 1.05$		230 V									
		1.00 kΩ 6.51 kΩ 3 Ω 999 Ω	1Ω		-	400 V									
	D	1 kΩ 2.17 kΩ 1Ω 651 Ω	0.01 kΩ 1Ω	$I_{\Delta N} = 30 \text{ mA} \cdot 1.05$ $I_{\Delta N} = 100 \text{ mA} \cdot 1.05$		f _N = 50/60 Hz									
	R _E	0.3 Ω 99.9 Ω	0.1 Ω	$I_{\Delta N} = 100 \text{ mA} \cdot 1.05$ $I_{\Delta N} = 300 \text{ mA} \cdot 1.05$		U _I = 25/50 V									
		100 Ω 217 Ω 0.2 Ω 9.9 Ω	1Ω 0.1Ω	IAN=300 IIIA · 1.03		-									
$I_{\Delta N}$		$10 \Omega \dots 130 \Omega$	1Ω	$I_{\Delta N}$ =500 mA \cdot 1.05		I _{ΔN} = 6 mA						•			
I _F	$I_{F} (I_{\Delta N} = 6 \text{ mA})$ $I_{F} (I_{\Delta N} = 10 \text{ mA})$	1.8 7.8 mA 3.0 13.0 mA	0,1 mA	1.8 7.8 mA 3.0 13.0 mA	1.8 7.8 mA 3.0 13.0 mA	10 mA 30 mA			•			Option			
	$I_F (I_{\Delta N} = 30 \text{ mA})$	9.0 39.0 mA	0,1 11/4	9.0 39.0 mA	9.0 39.0 mA	100 mA		±(3.5% rdg. + 2							
	$I_{F} (I_{\Delta N} = 100 \text{ mA})$ $I_{F} (I_{\Delta N} = 300 \text{ mA})$	30 130 mA 90 390 mA	1 mA 1 mA	30 130 mA 90 390 mA	30 130 mA 90 390 mA	300 mA 500 mA ²	±(5% rdg. + 1 d)	d)							
	$I_{\rm F} (I_{\Delta \rm N} = 500 \text{ mA})$ $I_{\rm F} (I_{\Delta \rm N} = 500 \text{ mA})$	150 650 mA	1 mA	150 650 mA	150 650 mA										
	$\frac{U_{I\Delta} / U_L = 25 \text{ V}}{U_{I\Delta} / U_I = 50 \text{ V}}$	0 25.0 V 0 50.0 V	0.1 V	Same as I_{Δ}	0 25.0 V 0 50.0 V	U _N ≤ 230 V	+10% rdg. + 1 d	+1% rdg1d +9% rdg.+ 1d							
	$t_A (I_{\Delta N} \cdot 1)$	0 1000 ms	1 ms	6 500 mA	0 1000 ms			+370 lug.+ lu							
	$t_A (I_{\Delta N} \cdot 2)$	0 1000 ms 0 40 ms	1 ms 1 ms	2 · 6 2 · 500 mA 5 · 6 5 · 300 mA	0 1000 ms 0 40 ms	U _N ≤ 230 V	±4 ms	±3 ms							
	$t_A (I_{\Delta N} \cdot 5)$	0 40 ms	1 1115		$0.10 0.49 \Omega$		±(10% rdg.+20d)	±(5% rdg.+20d)							
	$Z_{L-PE}(=)$	$1.00 \dots 9.99 \Omega$	$1 \text{ m}\Omega$	3.7 4.7 A AC	0.50 0.99 Ω 1.00 9.99 Ω	400/500 V ¹ f. =16 ² /. ⁸ /50/60 Hz	±(10% rdg.+20d) ±(5% rdg.+3d)	±(4% rdg.+20d) ±(3% rdg.+3d)							
	Z _{L-PE}	0 999 mΩ	0.01 Ω 0.1 Ω	3.7 4.7 A AC	0.25 0.99 Ω		±(18% rdg.+30d)	\pm (6% rdg.+50d)	-						
	+ DC	1.00 9.99 Ω 10.0 29.9 Ω	0.1 32	0.5/1.25 A DC	$1.00 \dots 9.99 \Omega$	$f_N = 50/60 \text{ Hz}$	$\pm(10\%$ rdg.+3d)	\pm (4% rdg.+3d)							
	I _K (Z _{L-PE}	0 9.9 A	0,1 A		120 (108 132) V				-						
		10 999 A 1.00 9.99 kA	1 A 10 A		230 (196 253) V 400 (340 440) V		Value calcula	ted from Z _{L-PE}	•	Z _{L-PE}					
Z _{L-N}	Z _{L-PE} + DC)	10.0 50.0 kA	100 A		500 (450 550) V		1 (100) and a 10 d)	L (00/ mln - 0 -l)	-	-L-PE					
	Z _{L-PE} (15 mA)	0.5 99.9 Ω 100 999 Ω	0.1 Ω 1 Ω		10 100 Ω 100 1000 Ω	U _N = 120/230 V		$\pm (2\% \text{ rdg.} + 2 \text{ d})$ $\pm (1\% \text{ rdg.} + 1 \text{ d})$							
		0.10 9.99 A	0.01 A	15 mA AC	100 mA 12 A	$f_N = 16^2 / \frac{8}{3} / 50 /$	Value calc	ulated from							
	l _K (15 mA)	10.0 99.9 A 100 999 A ¹⁴⁾	0.1 A 1 A		(U _N = 120 V) 200 mA 25 A	60 Hz		_{-PE} (15 mA)							
					$(U_N = 230 V)$ 0.10 Ω 0.49 Ω		±(10% rdg.+20d)	+(5% rdg +20d)							
	R _{E.sl} (without	0 999 mΩ 1.00 9.99 Ω		3.7 4.7 A AC 3.7 4.7 A AC	$0.50 \ \Omega \dots 0.99 \ \Omega$	U _N same as U	±(10% rdg.+20d)	±(4% rdg.+20d)							
	probe)	$10.0 \dots 99.9 \Omega$	0.1 Ω	400 mA AC	1.0 Ω9.99 Ω 10 Ω99.9 Ω	function ¹	\pm (5% rdg.+3d) \pm (10% rdg.+3d)	±(3% rdg.+3d) ±(3% rdg.+3d)							
	${\sf R}_{\sf E}$ (with probe)	100 999 Ω 1 kΩ 9.99 kΩ	1 Ω 0.01 kΩ	40 mA AC 4 mA AC	100 Ω999 Ω 1 kΩ 9.99 kΩ	$f_{N} = 50/60 \text{ Hz}$	$\pm(10\% \text{ rdg.}+3d)$ $\pm(10\% \text{ rdg.}+3d)$	±(3% rdg.+3d)							
D	R _{E (15 mA)}	0.5 99.9 Ω	0.1 Ω	15 mA AC	10 Ω99.9 Ω	U _N = 120/230 V	$\pm(10\%$ rdg.+30) $\pm(10\%$ rdg.+10d)	\pm (3% rdg.+3d) \pm (2% rdg. + 2 d)							
R _E	(without/with probe) R _{E.sl} (without	100 999 Ω	1Ω	13 IIIA AU	100 Ω999 Ω	f _N = 50/60 Hz	±(8% rdg. + 2 d)	±(1% rdg. + 1 d)	•			•			
	probe) A + DC	0 999 mΩ 1.00 9.99 Ω	1 mΩ 0.01 Ω	3.7 4.7 A AC	$0.25 \dots 0.99 \ \Omega$		±(18% rdg.+30d)	±(6% rdg.+50d)							
	R _{E.sl} (with probe)	10.0 29.9 Ω	0.1 Ω	0.5/1.25 A DC	1.00 9.99 Ω	f _N = 50/60 Hz	±(10% rdg.+3d)	±(4% rdg.+3d)							
	U _F	0 253 V	1 V	3.7 4.7 A AC	$R_F = 0.10 9.99 \Omega$	$U_{\rm N} = 120/230 \text{ V}$	Calculated U _⊏	$= U_N \cdot R_F/R_{F.sl}$	1						
		0 999 m Ω	1 mΩ	2.1 A AC	-	f _N = 50/60 Hz									
-	R _{E.sel}	1.00 9.99 Ω 10.0 99.9 Ω	0.01 Ω 0.1 Ω	2.1 A AC 400 mA AC	$0.25 \ldots 300 \ \Omega^4$	$U_{N} = 120/230 \text{ V}$ $f_{N} = 50/60 \text{ Hz}$	±(20% rdg.+20 d)	±(15% rdg.+20 d)						•	
R _E Sel	(only with probe)	100 999 Ω	1Ω	400 mA AC 40 mA AC		·N = 50/00 HZ									
Clamp	R _{E.sel}	0 999 mΩ 1.00 9.99 Ω	1 mΩ 0.01 Ω	3.7 4.7 A AC	0.25 300 Ω	U _N = 120/230 V	1/000/ 1 00 5	1/150/ 1 00 5							-
	+ DC (only with probe)	$10.0 \dots 99.9 \Omega$	0.1 Ω	0.5/1.25 A DC	$R_{E.tot} < 10 \Omega^4$	$f_N = 50/60 \text{ Hz}$	±(22% rdg.+20 d)	±(15% rdg.+20 d)							
EVTDA	_	100 999 Ω	1Ω 1kΩ	0.0 = 1 - 2000	10 kΩ 199 kΩ		±(20% rdg. + 2 d)	±(10% rdg.+3 d)				-			
EXTRA	Z _{ST}	0 to 30 MΩ	1 kΩ	2.3 mA at 230 V	$200 \text{ k}\Omega \dots 30 \text{ M}\Omega$	$U_0 = U_{L-N}$	±(10% rdg. + 2 d)		-	•	•	•			
					20 kΩ 199 kΩ	IT system nomi- nal voltages	±7%	±5%							
extra	IMD test	20 648 kΩ 2.51 MΩ	1 kΩ 0.01 MO	IT line voltage U.it = 90 550 V	200 k Ω 648 k Ω	UN.it = 120/230/400/	±12%	±10%	•		•				
		2.01 10122	5.01 1/152	5.it - 30 330 V	2.51 MΩ	500 V	±3%	±2%							
						f _N = 50/60 Hz									

											0011	nectio	13		
unc-	Measured	Display Range	Reso-	Test Current	Measuring	Nominal	Measuring	Intrinsic	Dlug	2-Pole	3-Pole		Cla		
tion	Quantity	Display hallye	lution	lost ouriont	Range	Values	Uncertainty	Uncertainty	Plug Insert ¹	Adapter		W712C	735124	MFLEX	CP110
										/ idaptor	ridaptor	112120	200121	P300	
		1 999 kΩ	1 kΩ			$U_{N} = 50 V$									
		1.00 9.99 MΩ	10 kΩ			$I_N = 1 \text{ mA}$									
		10.0 49.9 MΩ	100 kΩ			-14	-								
		1 999 kΩ	1 kΩ			U _N = 100 V									
		1.00 9.99 MΩ	10 kΩ			$I_N = 1 \text{ mA}$	$k\Omega$ range	$k\Omega$ range							
		10.0 99.9 MΩ	100 kΩ			-11	$\pm(5\% \text{ rdg.}+10\text{D})$								
	R _{ISO} , R _{E ISO}	1 999 kΩ	1 kΩ	I _K = 1.5 mA	$50 \text{ k}\Omega \dots 500 \text{ M}\Omega$		_(0 /0 /09/ / 02/	_(0/0/031100)							
R _{ISO}	"ISU, "E ISU	1.00 9.99 MΩ	10 kΩ	IK - 1.0 III/		$U_{N} = 250 V$	NO rango	$M\Omega$ range							
1950		10.0 99.9 MΩ	100 kΩ			$I_N = 1 \text{ mA}$	M Ω range	U	-	-					
		100 200 MΩ	1 MΩ				\pm (5% rdg. + 1 d)	±(3 % iug. + i u)							
		1 999 kΩ	1 kΩ			$U_{N} = 500 V$									
		1.00 9.99 MΩ	$10 \text{ k}\Omega$			$U_N = 1000 V$ $U_N = 1000 V$									
		10.0 99.9 MΩ	100 kΩ			$I_N = 1 \text{ mA}$									
		$100 \dots 500 M\Omega$	1 MΩ			N = 1 mA									
	U	10 999 V-	1 V		10 1.19 kV		$\pm (20)/rda \pm 1 d$	$\pm (1.5\% \text{ rdg.} + 1 \text{ d})$							
	U	1.00 1.19 kV	10 V				$\pm (3\% \text{ tuy.} + 1 \text{ u})$	$\pm(1.5\% \text{ tug.} + 1 \text{ u})$							
R _{LO}	R _{LO}	$0.01~\Omega$ $9.99~\Omega$	$10~{ m m}\Omega$	I _m ≥ 200 mA	$0.1~\Omega$ $5.99~\Omega$	$U_0 = 4.5 V$	$\pm (1\% rda \pm 2 d)$	±(2% rdg. + 2 d)							
''LO	INLO	$10.0 \ \Omega \dots 199.9 \ \Omega$	$100~\text{m}\Omega$		6.0 Ω 100 Ω	$0_0 = 4.5$ V	±(4 % lug. + 2 u)	±(2 /0 lug. + 2 u)							
				Transforma-			5	5							
				tion ratio ³			5	5							
		0.0 99.9 mA	0.1 mA				±(13% rdg.+5d)	±(5% rdg.+4d)							
	-	100 999 mA	1 mA	1 V/A	5 15 A							I 15A			
		1.00 9.99 A	0.01 A				±(13% rdg.+1d)	±(5% rdg.+1d)				110/1			
		10.0 15.0 A	0.1 A			f _N = 50/60 Hz									
		1.00 9.99 A	0.01 A	4		E 160 A	±(11% rdg.+4d)	±(4% rdg.+3d)				11 4 5 0 4			
		10.0 99.9 A	0.1 A	1 mV/A	5 150 A		±(11% rdg.+1d)	±(4% rdg.+1d)				II 150A			
		100 150 A	1 A				, o ,	、 。 ,							
		0.0 99.9 mA 100 999 mA	0.1 mA	1 V/A	5 1000 mA		$\pm (/\% \text{ rdg.} + 2 \text{ d})$						1 A		
			1 mA	100 1//4	0.05 10.4	-	±(7% rdg.+1 d)						10 A		
		0.00 9.99 A	0.01 A	100 mV/A	0.05 10 A	f _N =	±(3.4% rdg.+2 d)						10 A		
SEN-		0.00 9.99 A	0.01 A	10 mV/A	0.5 100 A	16.7/50/60/200/	$\pm (3.1\% \text{ rdg.} + 2 \text{ d})$						100 A		
SOR		10.0 99.9 A 0.00 9.99 A	0.1 A 0.01 A			400 Hz	$\pm (3.1\% \text{ rdg.} + 1 \text{ d})$ $\pm (3.1\% \text{ rdg.} + 1 \text{ d})$	$\pm(3\% \text{ rdg.}+1 \text{ d})$							
SUR	1	10.0 99.9 A	0.01 A	1 mV/A	5 1000 A		$\pm (3.1\% \text{ rdg.} + 1 \text{ d})$ $\pm (3.1\% \text{ rdg.} + 2 \text{ d})$						1000A		
6	I _{L/Amp}	100 999 A	1 A	TIIWA	J 1000 A		$\pm (3.1\% \text{ rdg.}+2 \text{ d})$ $\pm (3.1\% \text{ rdg.}+1 \text{ d})$						TUUUA		
7		0.0 99.9 mA	0.1 mA					$\pm(3\% \text{ rdg.}+100 \text{ d})$						0.03	
		100 999 mA	1 mA	1 V/A	30 1000 mA			$\pm(3\% \text{ rdg.}+100 \text{ d})$ $\pm(3\% \text{ rdg.}+11 \text{ d})$						3	-
		100 999 IIIA				-								0.3	-
		0.00 9.99 A	0.01 A	100 mV/A	0.3 10 A	f _N = 50/60 Hz		±(3% rdg.+12 d)							_
			0.01 A					±(3% rdg.+11 d)						30	
		0.00 9.99 A	0.01 A	10 mV/A	3 100 A		±(27% rdg.+100 d)							3	
		10.0 99.9 A	0.1 A	10 110/11	0 100 //		, ,	±(3% rdg.+11 d)						300	
		0.00 9.99 A	0.01 A	10 mV/A	0.5 100 A			±(3% rdg.+12 d)							100/
		10.0 99.9 A	0.1 A	TUTIWA	0.0 TOU A	f _N =	±(5% rdg.+2 d)	±(3% rdg.+2 d)							~
		0.00 9.99 A	0.01 A			DC/16.7/50/60/	±(5% rdg.+50 d)	±(3% rdg.+50 d)							1000/
		10.0 99.9 A	0.1 A	1 mV/A	5 1000 A	200 Hz	±(5% rdg.+7 d)	±(3% rdg.+7 d)							1000/
		100 999 A	1 A	t			±(5% rdg.+2 d)	±(3% rdg.+2 d)		1					~

1/2 :LM > 300 mA and 5 :UN > 500 mA and If > 300 mA only up to U_N \leq 230 V ! The transformation ratio selected at the clamp (1 ... 1000 mV/A) must be set in the "Type" menu with the rotary switch in the "SENSOR" position. З

4 Where R_{Eselective}/R_{Etotal} < 100

of the respective current clamp. 6

Measuring range of the signal input at the test instrument U_E: 0 ... 1.0 V_{eff} (0 ... 1.4 Vpeak) AC/DC Input impedance of signal input at the test instrument: 800 kΩ for f_N < 45 Hz => U_N < 253 V 7

8

Speci	al Function PR	OFITEST MPRO, I	MXTRA								
Func- tion	Measured Quantity	Display Range	Reso- lution	Test Current/ Signal Frequency ⁵	Measuring Range	Measuring Uncertainty	Intrinsic Uncertainty		Conne or Test Plug PRO-RE/2		Clamps Z591B
	RE, 3-pole	0.00 9.99 Ω 10.0 99.9 Ω	0.01 Ω 0.1 Ω	16 mA/128 Hz 1.6 mA/128 Hz	1.00 Ω 19.9 Ω 5.0 Ω 199 Ω	\pm (10% rdg.+10D) + 1 Ω	\pm (3% rdg.+5D) + 0,5 Ω	<u> </u>			
	RE, 4-pole	100 999 Ω 1.00 9.99 kΩ 10.0 50.0 kΩ		0.16 mA/128 Hz 0.16 mA/128 Hz 0.16 mA/128 Hz	50 Ω 1.99 kΩ 0.50kΩ 19.9kΩ 0.50kΩ 49.9kΩ	±(10% rdg.+10d)	±(3% rdg.+5d)	6			
RE _{BAT}	RE, 4-pole Selective With clamp meter	$\begin{array}{c} 0.00 \dots 9.99 \ \Omega \\ 10.0 \dots 99.9 \ \Omega \\ 100 \dots 999 \ \Omega \\ 1.00 \dots 9.99 \ \mathrm{k}\Omega \\ 10.0 \dots 19.9 \ \mathrm{k}\Omega \\ 10.0 \dots 19.9 \ \mathrm{k}\Omega \\ 16 \end{array}$	0.1 kΩ	16 mA/128 Hz 16 mA/128 Hz 1.6 mA/128 Hz 0.16 mA/128 Hz 0.16 mA/128 Hz 0.16 mA/128 Hz	1.00 Ω 9.99 Ω 10.0 Ω 200 Ω	±(15% rdg.+10d) ±(20% rdg.+10d) 10		6		9	
	Soil resistivity (p)	0.0 9.9 Ωm 100 999 Ωm 1.00 9.99 kΩm	0.1 Ωm 1 Ωm 0.01 k Ωm	16 mA/128 Hz 1.6 mA/128 Hz 0.16 mA/128 Hz 0.16 mA/128 Hz 0.16mA/128 Hz	$\begin{array}{c} 100 \ \Omega m \ \ 9.99 \ k\Omega m \ ^{12} \\ 500 \ \Omega m \ \ 9.99 \ k\Omega m \ ^{12} \\ 5.00 \ k\Omega m \ \ 9.99 \ k\Omega m \ ^{13} \\ 5.00 \ k\Omega m \ \ 9.99 \ k\Omega m \ ^{13} \\ 5.00 \ k\Omega m \ \ 9.99 \ k\Omega m \ ^{13} \\ \end{array}$	±(20% rdg.+10d)	±(12% rdg.+10d)	6			
	Probe distance d (p)	0.1 999 m									
	RE, 2 clamps	0.00 9.99 Ω 10.0 99.9 Ω 100 999 Ω 1.00 1.99 kΩ	0.01 Ω 0.1 Ω 1 Ω 0.01 kΩ	30 V / 128 Hz	0.10 9.99 Ω 10.0 99.9 Ω	±(10% rdg.+5d) ±(20% rdg.+5d)			7	9	8

5 6

Signal frequency without interference signal PRO-RE (Z501S) adapter cable for test plug, for connecting earth probes (E-Set 3/4)

7 PRO-RE/2 (Z5021) adapter cable for test plug, for connecting the generator clamp (E-CLIP2) Generator clamp: E-CLIP2 (Z591B) ⁹ Clamp meter: Z3512A (Z225A)

8

¹⁰ Where RE.sel/RE < 10 or clamp current > 500 μ A

 11 Where RE.H/RE \leq 100 and RE.E/RE \leq 100 12 Where d = 20 m 13 Where d = 2 m

 14 Where Z_{L-PE} < 0,5 $\Omega,$ I_k > U_N/0,5 Ω is indicated 15 Only where RANGE = 20 k Ω

¹⁶ Only where RANGE = 50 k Ω or AUTO

PROFITEST MASTER Characteristic Values

Reference Conditions

Line voltage

Line frequency

Supply power

Finger contact

insulation

230 V ± 0.1 % 50 Hz ± 0.1 % Meas. quantity frequency 45 Hz ... 65 Hz Sine (deviation between effective and Measured qty. waveform rectified value ≤ 0.1 %) Line impedance angle $\cos \phi = 1$ Probe resistance $\leq 10 \ \Omega$ $12 V \pm 0.5 V$ + 23° C ± 2 K Ambient temperature 40% to 60% Relative humidity For testing potential difference to ground potential Standing surface Purely ohmic

R_{LO}

Electronic protection prevents switching on if interference voltage is present

Fine-wire fuse protection FF 3.15 A 10 s, fuses blow at > 5 A

Electrical Safety

Protection class II per IEC 61010-1/EN 61010-1/ VDE 0411-1 Nominal voltage 230/400 V (300/500 V) 3.7 kV 50 Hz Test voltage Measuring category CAT III 500 V or CAT IV 300 V Pollution degree 2 Fusing, L and N terminals 1 cartridge fuse-link ea. FF 3.15/500G 6.3 x 32 mm

Electromagnetic Compatibility (EMC)

		Interference emission
Power Supply		EN 55022
		Interference immunity
Rechargeable batteries	8 each AA 1.5 V, we recommend only using the battery	EN 61000-4-2
	pack included in the standard equip-	EN 61000-4-3
	ment (pack of rechargeable batteries	EN 61000-4-4
	article no. Z502H)	EN 61000-4-5
Number of measuremen	ts (standard setup with illumination)	EN 61000-4-6
– For R _{ISO}	1 measurement – 25 s pause:	EN 61000-4-11
	Approx. 1100 measurements	
– For R _{LO}	Automatic polarity reversal / 1 Ω (1 measuring cycle) – 25 s pause: Approx. 1000 measurements	Ambient Conditio
Battery test	Symbolic display of battery voltage	Accuracy
	BAT	Operation
Battery saver circuit	Display illumination can be switched off. The test instrument is switched off	Storage
	automatically after the last key opera- tion. The user can select the desired on-time.	Relative humidity Elevation
Safety shutdown	If supply voltage is too low, the instru-	
	ment is switched off, or cannot be switched on.	Mechanical Desig
Recharging socket	Installed rechargeable batteries can be recharged directly by connecting a	Display
	charger to the recharging socket: charger Z502R	Dimensions
Charging time	Charger Z502R: Approx. 2 hours *	Weight
* Maximum charging time with	fully depleted rechargeable batteries	Protection

Maximum charging time with fully depleted rechargeable batteries. A timer in the charger limits charging time to no more than 4 hours.

Overload Capacity

R _{ISO} U _{L-PE} , U _{L-N}	1200 V continuous 600 V continuous
RCD, R _E , R _F	440 V continuous
Z _{L-PE} , Z _{L-N}	550 V (Limits the number of measure- ments and pause duration. If overload occurs, the instrument is switched off by means of a thermostatic switch.)

Product standard	EN 61326-1:2006	
Interference emission		Class
EN 55022		A
Interference immunity	Test Value	Feature
EN 61000-4-2	Contact/atmos 4 kV/8 kV	
EN 61000-4-3	10 V/m	
EN 61000-4-4	Mains connection – 2 kV	
EN 61000-4-5	Mains connection – 1 kV	
EN 61000-4-6	Mains connection – 3 V	
EN 61000-4-11	0.5 period / 100%	

ons

Accuracy Operation	0 to + 40 °C −5 to + 50 °C
Storage	-20 to +60 °C (without rechargeable batteries)
Relative humidity Elevation	Max. 75%, no condensation allowed Max. 2000 m

gn

Display	Multiple display with dot matrix, 128 x 128 pixels
Dimensions	W x L x D: 260 x 330 x 90 mm
Weight	approx. 2.7 kg with rechargeable batteries
Protection	Housing: IP 40, test probe: IP 40 per EN 60529/DIN VDE 0470, part 1

Data Interfaces

Туре	USB slave for PC connection
Туре	RS 232 for barcode and RFID scanners
Туре	<i>Bluetooth</i> [®] for connection to PC
	(PROFITEST MTECH+/MXTRA/
ire-	SECULIFE IP only)

Scope of delivery:

- 1 Test instrument
- 1 Earthing contact plug insert (country-specific)
- 1 2-pole measuring adapter and 1 cable for expansion into a 3-pole adapter (PRO-A3-II)
- 2 Alligator clips
- 1 Shoulder strap
- 1 Set of rechargeable batteries (Z502H)
- 1 Battery charger Z502R
- 1 Condensed operating instructions
- 1 Supplement Safety Information
- Detailed operating instructions for download from our website at www.gossenmetrawatt.com
- 1 DAkkS calibration certificate
- 1 USB cable

Special Functions with PROFITEST MPRO and PROFITEST MXTRA

(Rechargeable) Battery Powered Earthing Resistance Measurements

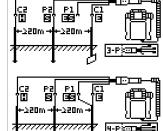
Earthing Resistance R_E

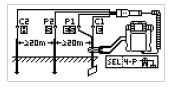
3-wire measuring method, probes and earth electrodes connected via PRO-RE adapter

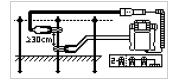
4-wire measuring method, probes and earth electrodes connected via PRO-RE adapter

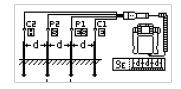
Selective Earthing Resistance R_E

(4-wire measuring method) Current clamp sensor connected directly, probes and earth electrodes connected via PRO-RE adapter

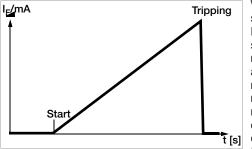

Earth Loop Resistance RELOOP


2-clamp measurement:


Current clamp sensor connected directly, current clamp transformer connected via PRO-RE/2 adapter


Soil Resistivity Rho

Probes connected via PRO-RE adapter

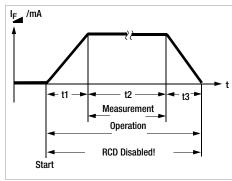


Special Functions with PROFITEST MTECH+/MXTRA and SECULIFE IP

Tripping Test for Type B, AC/DC Sensitive RCDs 🖂 ≕ with Rising DC Residual Current and Measurement of Tripping Current

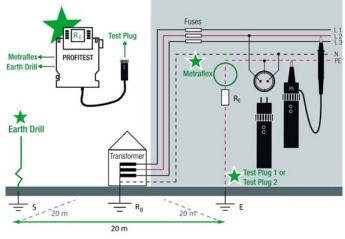
With the selector switch in the I_{F→} position, slowly rising current flows via N and PE. The momentary measured current value is continuously displayed. When the RCCB is

tripped, the last measured current value is displayed. A greatly reduced rate of increase is used for delayed RCCBs (type [s]).


Tripping Test for Type B, AC/DC Sensitive RCDs \fbox = with Constant DC Residual Current and Measurement of Tripping Time

With the selector switch set to the respective nominal residual current, twice the selected nominal current flows via N and PE. Time to trip is measured for the RCCB and displayed.

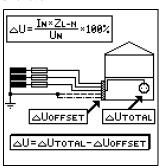
Loop Resistance Measurement with Suppression of RCD Tripping


The test instruments make it possible to measure loop impedance in TN systems with type A, F \bowtie and type AC \sim RCCBs (10, 30, 100, 300, 500 mA nominal residual current).

The respective test instrument generates a DC residual current to this end, which saturates the RCCB's magnetic circuit. The test instrument then superimposes a measuring current which only demonstrates half-waves of like polarity. The RCCB is no longer

capable of detecting this measuring current, and is consequently not tripped during measurement.

Selective Earthing Resistance Measurement (mains powered)


Special Functions

Voltage Drop Measurement (at $Z_{LN})$ – ${\rm \Delta U}$ Function

According to DIN VDE 100, part 600, voltage drop from the intersection of the distribution network and the consumer system to the point of connection of an electrical power consumer (electrical outlet or device connector terminals) should not exceed 4% of nominal line voltage.

Voltage drop calculation:

 $\Delta U = Z_{L-N} \bullet \text{ rated fuse current}$ $\Delta U \text{ as } \% = \Delta U / U_{L-N}$

Special Functions PROFITEST MXTRA

Leakage Current Measurement with PRO-AB Adapter (PROFITEST MXTRA only)

рит

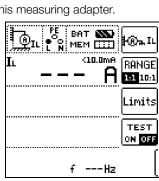
Ο

Contacting

of exposed

metal surface

<u>Measurement of</u>


<u>leakage current</u>

Measurement of continuous leakage and patient auxiliary current per IEC 62353 (VDE 0750, part 1) / IEC 601-1 / EN 60 601-1:2006 (Medical electrical equipment – General requirements for basic safety) is possible with the help of the PRO-AB leakage current measuring adapter used as an accessory with the PROFITEST MXTRA test instrument.

As specified in the standards listed above, current values of up

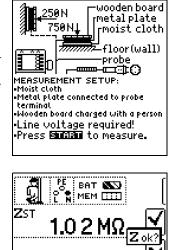
to 10 mA may be measured with this measuring adapter.

In order to be able to fully cover this measuring range using the measurement input provided on the test instrument (2-pole current clamp input), the measuring instrument is equipped with range switching between transformation ratios of 10:1 and 1:1.

L1.N.PE

2502S

Ъ

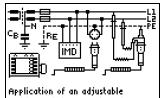

OPEN

TEST

ON DEE

Measurement of the Impedance of Insulating Floors and Walls (standing surface insulation impedance) – Z_{ST} Function

The instrument measures the impedance between a weighted metal plate and earth. Line voltage available at the measuring site is used as an alternating voltage source. The Z_{ST} equivalent circuit is considered a parallel circuit.

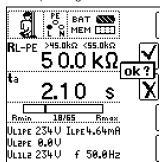

fn50.0Hz

UN 230 U

Testing of Insulation Monitoring Devices (IMDs) (PROFITEST MXTRA and SECULIFE IP only)

Insulation monitors are used in power supplies for which a single-pole earth fault may not result in failure of the power supply, for example in operating rooms or photovoltaic systems.

Insulation monitors can be tested with the help of this special function. After pressing the start button, an adjustable insulation resistance is activated between one of the two phases of the IT system to be monitored and ground to

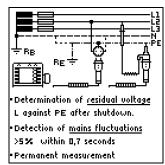


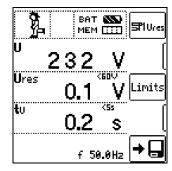
resistance between external conductor and earth in the IT mains

Start/Stop: press **Stuffish**

this end. This resistance can be changed in the manual sequence mode with the help of the softkeys, and it can be varied automatically from R_{max} to R_{min} in the automatic operating mode.

Time, during which the momentary resistance value prevails at the system until the next change in value, is displayed. The IMD's display and response characteristics can be subsequently evaluated and documented with the help of the softkeys.


Special Functions PROFITEST MXTRA


Determining Residual Voltage / Detecting Mains Fluctuations (PROFITEST MXTRA only)

The EN 60204 standard specifies that after switching supply power off, residual voltage between L and PE must drop to a value of 60 V or less within 5 seconds at all accessible, active components of a machine to which a voltage of greater that 60 V is applied during operation.

With the PROFITEST MXTRA, testing for the absence of voltage is performed as follows by means of a voltage measurement which involves measuring discharge time tu:

In the case of voltage dips of greater than 5% of momentary line voltage (within 0.7 seconds), the stopwatch is started and momentary undervoltage is displayed as Ures after 5 seconds and indicated by the red UL/RL diode.

ta[I_] > ta[I_N [100%]]

10,30,100,300,500 & 😫 [mA]

300ms

35%

Ian

TAN:

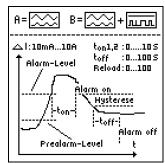
[[ms]

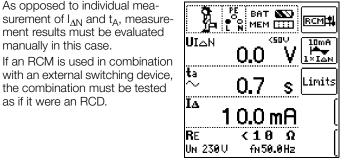
Ia [mA]

Special Functions PROFITEST MXTRA

Testing Residual Current Monitoring Devices (RCMs) (PROFITEST MXTRA only)

RCMs (residual current monitors) monitor residual current in electrical systems and display it continuously. As is also the case with residual current devices, external switching devices can be controlled in order to shut down supply power in the event that a specified residual current value is exceeded. However, the advantage of an RCM is that the user is informed of fault current within the system before shutdown takes place.


As opposed to individual mea-

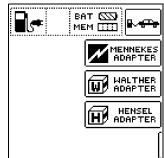

ment results must be evaluated

the combination must be tested

manually in this case.

as if it were an RCD.

Testing the Operating States of Electric Vehicles at Charging Stations per IEC 61851 (PROFITEST MTECH+ & PROFITEST MXTRA only)


A charging station is an equipment designed for the charging of electric vehicles per

IEC 61851 which essentially consists of a plug connector, a cable protection, a residual current device (RCD), as well as a circuit breaker and a security communication system (PWM).

Depending on the place of installation and application, further functional features such as mains connection and meter may be included.

Simulation of operating states per IEC 61851 with the MENNEKES test box (State A - E)

The MENNEKES test box only serves the purpose of simulating different operating states of an electric vehicle fictitiously connected with a charging station.

BAT ۵. MEM [333] Ч 37 Ľ ok? D I SELECT STATUS A STATUS

Intelligent Ramp (PROFITEST MXTRA only)

The advantage of this measuring function in contrast to individual measurement of $I_{\Delta N}$ and t_A is the simultaneous measurement of breaking time and breaking current by means of a test current which is increased in steps. during which the RCD is tripped only once.

The intelligent ramp is subdivided into time segments of 300 ms each between the initial current value (35% $I_{\Delta N})$ and the final cur-

rent value (130% $I_{\Lambda N}$). This results in a gradation for which each step corresponds to a constant test current which is applied for no longer than 300 ms, assuming that tripping does not occur.

And thus both tripping current and tripping time are measured and displayed.

BAT 🔊 TYP ġ)#∺ta<u>+l</u>≙ UIAN <50V 10mA RCD. 0.0 ТҮР А <300ms >0ms ta 3 ms Limits ~ 2 >5.0mA <10.0mA ĪΔ 5.5 mA RE <10 Ω ≁ե UN 230U fn50.0Hz

Special Functions PROFITEST MXTRA

Test Sequences for Report Generation of Fault Simulations on PRCDs type S and K with PROFITEST PRCD (PROFITEST MXTRA only):

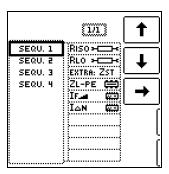
- Three test sequences are preconfigured:
- PRCD-S (single phase/3-pole)
- PRCD-K (single phase/3-pole)
- PRCD-S (three-phase/5-pole)
- The test instrument guides you through all test steps in a semi-automatic fashion:

Single phase PRCDs: PRCD PRCD 3-phase PRCDs: PRCD

PRCD-S: 11 test steps PRCD-K: 4 test steps PRCD-S: 18 test steps

 Each test step is assessed and evaluated by the user (OK/not OK) for subsequent report generation purposes.

- Measurement of protective conductor resistance of the PRCD by means of function R_{LO} at the test instrument.
- Measurement of insulation resistance of the PRCD by means of function R_{ISO} at the test instrument.
- Trip test with nominal fault current by means of function I_F
 i at the test instrument.
- Measurement of tripping time by means of function ${\rm I}_{\Delta N}$ at the test instrument.
- Varistor test with PRCD-K: measurement via ISO ramp.


Further information is included in the data sheet for the PROFITEST PRCD.

Special Functions (all Types)

Automatic Test Sequence Function

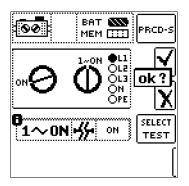
If the same order of tests with subsequent report generation is to be performed repeatedly, as is, for example, specified by certain standards, we recommend using test sequences.

With the help of test sequences it is possible to compile automatic test procedures on the basis of the manual individual measurements. A test sequence consists of up to 200 individual test steps which have to be processed one after the other.

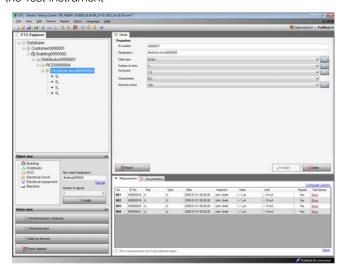
The test sequences are created at a PC by means of the ETC software and are then transferred to the PROFITEST MPRO or PROFITEST MXTRA test instruments.

The measurement parameters are also configured at a PC. However, they can still be modified at the test instrument during the test procedure before the respective measurement is launched.

Interface (PROFITEST MTECH+/MXTRA/SECULIFE IP only)

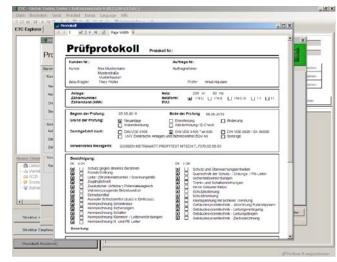

If your PC is equipped with a *Bluetooth*[®] interface, wireless communication is possible between the test instrument and ETC user software for the transfer of data and test structures.

Selecting the PRCD under Test


60	BAT SSS MEM 🛄	PRCD
		PRCD-S 1~
		РВСД-К 1~
		PRCD-S 3~

Example Simulation Interruption

ETC User Software for PC


(web address for download see page 20) Creation of Individualized Test Structures at a PC and Transfer to the Test Instrument

Editing of Selection Lists

Ausgangspunkt	-	identeration	0316785		
a di Garystraße 38	entellisten	dependence pro-	2001	_]= ×	
Abgang AL Abgang	swahlliste	en Assistent			• Exotelan
Abgang tu Abgang Abgang Abgang Abgang Abgang W	uenkliste orige (16/71) odelnort	Querchold Querchold Advenuell Profit Hencoder Falles Bencoder Falles Bencoder Falles Bencoder Rates Bencoder States Bencoder Bencod			XLindres
Stromkz	et.	13 14 13 13 13 14 15 15 15 15 15 15 15 15 15 15	D file access	mm*	
Noun	Access theirs incl	. Dearsten ann Fraigerat alse began	Abbruchen	Develop	
Never Parts Anns				Devender	
Nicon Participanti Anex Participanti				December	

Report Generating

Report Generating Accessories

PROTOKOLLmanager Professional

Report generating software for documenting electrical tests in accordance with DGUV provision 3 (previously BGV A3), VDE 0100 and VDE 0701-0702 with unlimited customer management.

ELEKTROmanager

Software for measurement and documentation of electrical devices and electrical installations.

ELEKTROmanager represents a new generation of software for data logging and data management, as well as for controlling test sequences used by electricians concerned with effectiveness, technical competence and legal security. Use is easy to learn and self-explanatory to a great extent. All common measuring instruments supplied by other manufacturers can be interconnected, i.e. after purchasing a new GMC-I Messtechnik GmbH instrument the customer can continue using an older instrument from another manufacturer.

PS3 Software for Test Instruments

PS3 reads in measurement data acquired with test instruments and organizes them automatically according to activity, i.e. testing, maintenance and inspection. Only a few quick work steps are required for the generation of ready-to-sign test reports and handover reports.

Standard requirements, for example reading in measurement data and report printing, are fulfilled with the basic module and the device module. Other requirements including following up on deadlines, test data history and selection of any desired data for generating lists, right on up to complete object management (equipment and buildings), are handled by the add-on module and any required additional modules.

Data can be exported from PS3 to the test instrument.

An overview of PS3's performance features can be accessed at our website.

Report and List Generation with PC.doc-WORD-EXCEL

Prerequisite: Microsoft WORD or Microsoft EXCEL

PC.doc-WORD-EXCEL inserts test results and data entered at the test instrument input module into report or list forms. These can then be supplemented and printed out with Microsoft WORD or Microsoft EXCEL.

Test Data Management with PC.doc-ACCESS

Prerequisite: PC.doc-ACCESS

PC.doc-ACCESS manages device, machine, equipment, master and test data. Available test data are automatically entered to master data and test data lists which are assigned to individual customers.

Data are represented in accordance with the respective test regulation. Data are displayed as lists or in data sheet format, and can be sorted and filtered in a variety of different ways.

Complete test data management is thus made possible. Reports and deadline lists can be printed out for selectable ID number ranges and dates.

See following page and separate ID systems data sheet regarding barcode scanners and printers, as well as RFID readers.

PROFISCAN ETC (ring binder with barcodes) – Z502G Barcode scanner for connection to RS 232 port at tester – Z502F

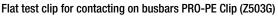
Barcode and label printer for USB connection to a PC - Z721E

Barcode/label printer for connection to a PC, for self-adhesive, smudge-proof barcode labels, for identifying devices and system components. Devices and system components can be logged by our test instruments, and acquired measured values can be allocated to them with the scanner.

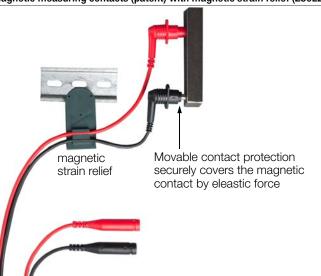
SCANBASE RFID reader for connection to RS 232 port at tester - Z751G

Accessory Plug Inserts and Adapters

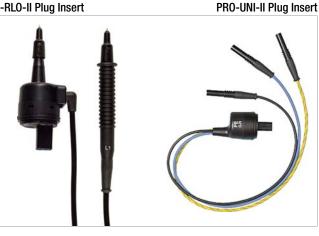
Country specific Plug Inserts


PRO-Schuko

Country specific Plug Insert PRO-GB-USA (Z503B) Test Probes (L 68 mm, \varnothing 2,3 mm) Set-Probes (Z503F)


PRO-W

Magnetic measuring contacts (patent) with magnetic strain relief (Z502Z)


The Z751G RFID reader is preprogrammed to scan the fol-

Order No.	Frequency	Standard	Туре	Quantity per Package
Z751R	13.56 MHz	ISO 15693	approx. 22 mm dia., self-adhesive	500 pieces
Z751S	13.56 MHz	ISO 15693	approx. 30 x 2 mm dia. with 3 mm hole	500 pieces
Z751T	13.56 MHz	ISO 15693	Pigeon ring, approx. 10mm dia.	250 pieces

Power Supply Accessories

PRO-RLO-II Plug Insert

3-Phase Current Adapters 5-pole

A3-16, A3-32 and A3-63 3-phase adapters are used for trouble-free connection of test instruments to 5pole CEE outlets. The three variants differ with regard to plug size, which corresponds respectively to 5-pole CEE outlets with current ratings of 16, 32 and 63 A. Phase sequence is indicated with lamps at all three variants. Testing the effectiveness of safety

measures is conducted via five 4 mm contact protected sockets.

3-Phase Current Adapter 7-pole

A3-16 Shielded and A3-32 Shielded 3-phase adapters are used for trouble-free connection of test instruments to 7-pole CEE outlets. The two variants differ with regard to plug size, which corresponds respectively to 7-pole CEE outlets with current ratings of 16 and 32 A. Testing the effectiveness of safety measures is conducted via seven 4 mm sockets with touch protection.

Variable Plug Adapter Set

Three self-retaining, contact protected test probes for the connection of measurement cables with 4 mm banana plugs, or with contact protected plugs for sockets with an opening of 3.5 mm to 12 mm, e.g. CEE, Perilex sockets etc. For example,

the test probes also fit the square PE jacks on Perilex sockets. Maximum allowable operating voltage: 600 V per IEC 61010.

PRO-AB Leakage Current Measuring Adapter for PROFITEST MXTRA and SECULIFE IP

Input current: 0 to 10 mA Input impedance: 1 kΩ ±0.5% Output voltage: 10:1 0 to 1 V (0.1 V/mA) 0 to 10 V (1 V/mA) 1:1Output impedance: $10 \text{ k}\Omega$

KS24 Cable Set

The KS24 cable set includes a 4 m long extension cable with a permanently attached test probe at one end and a contact protected socket at the other end, as well as an alligator clip which can be plugged onto the test probe.

TELEARM 120 Telescoping Rod

Floor Probe

The 1081 floor probe makes it possible to measure the resistance of insulating floors in accordance with DIN VDE 0100, part 600, and EN 1081.

WZ12C

Current clamp sensor for leakage current, selectable measuring ranges: 1 mA to 15 A, 3% and 1 A to 150 A, 2% Transformation ratios: 1 mV/mA, 1 mV/A

METRAFLEX P300

Flexible current clamp sensor for selective earthing resistance measurement 3/30/300 A, 1 V/100 mV/10 mV/A

Earthing Resistance Measurement Accessories

PRO-RE/2 Clamp Adapter

Adapter which is mounted to the test plug allowing for connection of the E-Clip 2 generator clamp for 2clamp or ground-loop earthing resistance measurement. 2-clamp or ground loop measurement is thus made possible.

PRO-RE Adapter

Earth electrodes, auxiliary earth electrodes, probe and auxiliary probe are connected to the tester via the banana plug sockets, and thus via the adapter which is mounted to the test plug.

E-Clip 2 Clamp Generator

Output signal: 0.2 mA to 1.2 A Equipped with laboratory safety plug inputs



Z3512A AC Current Sensor Clamp

Switchable measuring ranges: 1 mA to 1/100/1000 A~ Transformation ratios: 1 V/A, 100mV/A, 10 mV/A, 1 mV/A

TR25 Reel

TR50 Drum with 50m Measurement Cable

50 m measurement cable coiled onto a plastic drum. Connection to the inside end of the cable is made possible with a socket integrated into the drum. The other end is equipped with a banana plug. The drum axle with handle can be removed for space saving storage.

Cable resistance can be compensated for with the rotary selector switch in the $\rm R_{\rm LO}$ position.

SP350 Earth Drill

E-Set 3 Earth Tester Set

Accessory Cases and Trolleys

SORTIMO L-BOXX GM (Z503D)

Foam insert for SORTIMO L-BOXX GM (Z503E)

Profi-Case (Z502W)

Outside dimensions: H x W x D 390 x 590 x 230 mm

Plastic system case Outside dimensions:

450 x 255 x 355 mm Foam insert Z503E

for tester and acces-

ordered seperately,

sories, has to be

WxHxD

see below.

E-CHECK Case (Z502M)

Outside dimensions: H x W x D 390 x 590 x 230 mm

Sample Contents

F2000 Universal Carrying Pouch

F2020 Large Universal Carrying Pouch

cut fashion and conveniently transported in the F2000 carrying pouch. Outside dimensions: 380 x 310 x 200 mm (without buckles, handle and carrying strap)

Test instrument, plug

inserts, measuring adapt-

ers, replacement batter-

ies, recording charts etc. can be stored in a clear-

Outside dimensions: W x H x D 430 x 310 x 300 mm (without buckles, handle and carrying strap)

Trolley for Profi-Case (Z502B) and E-CHECK Case (Z502N)

Folded-up dimensions: 395 x 150 x 375 mm

Ever-ready case for PROFITEST MASTER (Z502X)

E-Mobility Accessories

PRO-TYP I (Z525B)

PRO-TYP II (Z525A)

Indication of Phase Voltages via LEDs

Depending on the charging station, either one or three phases can be active.

Testing of electrical charging stations with permanently connected charging cable due to extended CP test pin

Order Information

Designation	Туре	Article Number				
PROFITEST MASTER Instrument Variants						
Universal protective measures test instrument per EN 61557, sections 1, 2, 3, 4, 5, 6, 7 and 10 with inte- grated memory and insulation mea- surement up to 1000 V as well as selective earth measurement with current clamps as optional accesso- ries, with DAkkS calibration certifi- cate	PROFITEST MPRO	M520N				

Vehicle Simulation (CP)

Vehicle states A through E are selected with a rotary switch. Cable Simulation (PP)

via permanently wired cable coding

Fault Simulation

Simulation of a shortcircuit between CP and PE by means of a rotary switch Indication of Phase Voltages via LEDs

Vehicle Simulation (CP)

Vehicle states A through E are selected with a rotary switch. Cable Simulation (PP)

The various codings for charging cables with 13, 20, 32 and 63 A, as well as "no cable connected", can be simulated with the help of a rotary switch.

Fault Simulation

Simulation of a shortcircuit between CP and PE by means of a rotary switch

Iniversal protective measures test nstrument per EN 61557, sections , 2, 3, 4, 5, 6, 7 and 10 with inte-			Flat test clip for fast and safe con-		
rated memory and insulation mea- surement up to 1000 V as well as additional tripping test for AC/DC sensitive RCDs and loop impedance neasurement without tripping the			tacting on busbars. Powerful con- tacting on the front and rear of the busbars by means of established Multilam. Fixed Ø 4 mm socket in the pressure grip handle section, to fit spring-loaded Ø 4 mm plugs with rigid insulating sleeve. 1000 V CAT IV/32 A	PRO-PE Clip	Z503G
RCD, e-mobility test, Bluetooth inter- ace, DAkkS calibration certificate	PROFITEST MTECH+	M520R	2 magnetic measurement contacts	PRU-PE Clip	Z503G
Iniversal protective measures test instrument per EN 61557, sections I, 2, 3, 4, 5, 6, 7 and 10 with inte- irated memory and insulation mea- urement up to 1000 V as well as idditional tripping test for AC/DC ensitive RCDs, loop impedance measurement without tripping the RCD, selective earth measurement			2 magnetic measurement contacts with contact protection – Set with magnetic holder, measurement con- tacts 5,5 mm in diameter insulated, CAT III 1.000 V / 4 A, temperature between –10 °C and 60 °C, under standard conditions and flat-head screws holding force 1.200 g vertical to contact area; measuring instrument connector: 4 mm sockets for PRO-A3-II	Set 3 – Magn. Measuring Tips	Z502Z
vith current clamps as optional ac- essories, testing of IMDs and RCMs, Bluetooth interface, DAkkS ealibration certificate	PROFITEST MXTRA	M520P	With 10 m cable based on 2-wire mea- suring technology for PE and similar measurements, 300 V / 16 A CAT IV	PRO-RLO-II	Z501P
Iniversal protective measures test nstrument per EN 61557, sections			With 3 connector cables for any connec- tion standards, 300 V / 16 A, CAT IV 5-pole 3-phase adapter for 16 A	PRO-UNI-II	Z501R
, 2, 3, 4, 5, 6, 7 and 10 with inte- rated memory and insulation mea-			CEE outlets	A3-16	GTZ3602000R0001
surement up to 1000 V as well as additional tripping test for AC/DC			5-pole 3-phase adapter for 32 A CEE outlets	A3-32	GTZ3603000R0001
ensitive RCDs and loop impedance neasurement, testing of IMDs, Blue-			5-pole 3-phase adapter for 63 A CEE outlets	A3-63	GTZ3604000R0001
ooth interface, DAkkS calibration ertificate	SECULIFE IP	M520U	Three-phase adapter shielded, 7-pin for CEE socket outlets 16 A, CAT III 300 V – 10 A	A3-16 Shielded	Z513A
Test Instrument Power Supply Acc B LSD NiMH rechargeable batteries vith reduced self-discharging (AA),	essories		Three-phase adapter shielded, 7-pin for CEE socket outlets 32 A, CAT III 300 V – 10 A	A3-32 Shielded	Z513B
vith sealed cells	MASTER Battery Set	Z502H	Variable Plug Adapter Set	Z500A	Z500A
Broad-range charger for charging batteries included in the PROFITEST /TECH+, MPRO, MXTRA and SECULIFE IP			Calibration adapter for testing of the accuracy of measuring instruments for insula- tion resistance and low-value resistors	ISO Calibrator 1	M662A
nput: 100 to 240 V AC Dutput: 16.5 V DC, 1 A	PROFITEST MASTER Charger	Z502R	Leakage current measuring adapter for PROFITEST MXTRA and SECULIFE IP	PRO-AB	Z502S
And a state of the second			Accessories		
Accessory Plug Inserts and Adapte Earth contact plug insert (Schuko):	ers		Extension cable, 4 m	KS24	GTZ3201000R0001
and contact plug insert (Schuko). O, A, NL, F etc. ame as PRO-Schuko, however with ingled earth-contact plug	PRO-Schuko PRO-W	GTZ3228000R0001	Telescoping rod for RLO and RISO measurement, CAT III 600 V / CAT IV 300 V, 1 A, retracted/extended 53,3 cm/120 cm, 190 g	TELEARM 120 ^D	Z505C
Plug insert per SEV: CH	PRO-CH	GTZ3225000R0001	Telescoping rod for RLO and RISO	TELEARM 180 D	Z505D
Plug insert with adapters for GB & USA	PRO-GB/USA-Set	Z503B	measurement, CAT III 600 V / CAT IV		
Plug insert for South Africa	PRO-RSA	Z501A	300 V, 1 A, retracted/extended 73,5 cm/180 cm, 250 g		
2/3-pole measuring adapter for 3- hase and rotating-field systems, 800 V/1 A CAT IV with safety cap 800 V/1 A CAT III with safety cap		75010	Triangular probe for floor measure- ments in accordance with EN 1081 and DIN VDE 0100 Current clamp sensor for leakage	1081 Probe	GTZ3196000R0001
300 V/16 A CAT II without safety cap ame as PRO-A3-II, however with straight cables of 10m each instead	PRO-A3-II	Z5010	current clamp sensor for leakage current, switchable: 1 mA to 15 A, 3% and 1 A to 150 A, 2%	WZ12C ^D	Z219C
of coil cables Set-Probes CAT III / 600 V, 1 A,	PRO-A3-II ncc	Z503C	Flexible AC current sensor, 3, 30, 300 A, 1 V, 100 mV, 10 mV / A, with batteries, probe length: 45 cm	METRAFLEX P300	Z502E
vorking range of the probes 68 mm		75005		METHALLAT JUU	LUULL
- diameter 2,3 mm	Set-Probes	Z503F			
	Set-Probes	2503F	Accessory Cases and Trolleys		

Aluminum case for test instrument

The E-CHECK case can be mounted Trolley for

and accessories

to the trolley.

Z502M

Z502N

E-CHECK Case

E-CHECK Case

Designation	Typo	Article Number	Designation	Typo	Article Number
-	Type F2000 ^D			Туре	Article Number
Universal carrying pouch		Z700D	Consisting of PROFITEST MTECH+, variable plug adapter set, SP350		
Large universal carrying pouch	F2020	Z700F	earth spike, TR50 plastic drum,		
Plastic system case	SORTIMO L-BOXX GM	Z503D	PRO-RLO II adapter and instrument	TECH plus Master	
Foam insert for SORTIMO L-BOXX GM with divider for PROFITEST MASTER	Foam SORTIMO L-BOXX Profitest M	Z503E	master case (Z502A) Consisting of PROFITEST MTECH+,	Package	M501C
Profi-hardcase with imprint and dev- iders for sets with Profitest Master and accessories incl. trolleyholder	Profi-Case	Z502W	VARIO-STECKER-Set and E-CHECK case	E-CHECK Set plus	M501D
	1		VARIO-STECKER-Set, plastic system		
Earthing Resistance Measurement	t Accessories		case SORTIMO L-BOXX GM with foam		
Measuring adapter for connecting a second clamp (generator clamp), allows for 2-clamp measuring method			insert, MASTER Battery Set and MPRO MXTRA Charger, set of test probes Consisting of PROFITEST MXTRA,	XTRA Starter Package	M500V
(ground loop measurement)	PRO-RE-2	Z502T	VARIO-STECKER-Set, Profi Case,		
Connection adapter for earthing ac- cessories for 3/4-wire measure- ment and selective earthing resis- tance measurement		75010	PRO-W plug insert, PRO-RLO-II, MASTER Battery Set and MPRO MX- TRA Charger, set of test probes	XTRA Master Package	M500W
tance measurement	PRO-RE	Z501S	Consisting of PROFITEST MXTRA, VARIO-STECKER-Set. Profi Case. leak-		
Generator clamp for 2-clamp mea- suring method (ground loop mea- surement), transformation ratio: 1000 A / 1 A, current measuring			age current measuring adapter PRO- AB, MASTER Battery Set and MPRO MXTRA Charger, set of test probes	XTRA MED Package	M500X
range: 0.2 A to 1200 A, output sig-		750 / D	Consisting of PROFITEST MXTRA,		
nal: 0.2 mA to 1.2 A	E-CLIP 2	Z591B	VARIO-STECKER-Set, Profi Case, PRO-W plug insert, generator clamp		
Current clamp sensor for selective earth measurement and as clamp meter for 2-clamp measuring method (ground loop measure- ment), switchable measuring ranges: 0 to 1 / 100 / 1000 A~ AV~ ± (0.7% to 0.2%)	Z3512A ^D	Z225A	E-Clip 2 and Current clamp sensor for earth measurement Z3512A, measuring adapter for connecting a second clamp PRO-RE-2, MASTER Battery Set and MPRO MXTRA Char- ger, set of test probes	XTRA Profi Package	M500Y
	TR25 Reel			XIII III IIII aolago	110001
Reel with 25 m measurement cable		GTZ3303000R0001	E-Mobility Accessories		
Drum with 50 m measurement cable Earth drill, 35 cm long, for earth measurement	SP350 Earth Drill	GTY1040014E34 GTZ3304000R0001	Single phase test adapter with type 1 plug	PRO-TYP I ^D	Z525B
Earth tester set: artificial leather pouch with two reels, 2 measure- ment cables (25 m ea.), 1 measure-			Single and 3-phase test adapter with type 2 plug	PRO-TYP II ^D	Z525A
ment cable (40 m), 2 measurement			Report Generating Accessories		
cables (3 m ea.), 4 earth spikes (zinc			See separate ID systems data sheet re	narding harcode scanners	orinters and REID readers
plated), 2 spike pullers, 1 hammer	E-Set 3	GTZ3301005R0001	Barcode scanner for RS 232 con-	RS 232 Profiscanner	
Earth tester set: artificial leather pouch with two reels, 2 measure-			nection with roughly 1 m coil cable	for Barcodes	Z502F
ment cables (25 m ea.), 1 measure-			Ring binder with preprinted barcodes	PROFISCAN ETC D	Z502G
ment cable (40 m), 2 measurement	E Cat 4	75004	for scanning (German)		
cables (3 m ea.), 4 earth drills	E-Set 4	Z590A	RFID reader/writer	SCANBASE RFID	Z751G
Test adapter for testing portable safety switches (types PRCD-K and			PC analysis software		
PRCD-S) with the help of the PROFITEST MXTRA test instrument (not included)	PROFITEST PRCD D	M512R	Further information regarding software is available on the Internet at: http://www.gossenmetrawatt.com (→ Products → Electrical Testing → Testing of Electr. Installations → PROFITEST MASTER)		
Starter Packages			or		
Consisting of PROFITEST MTECH+,			http://www.gossenmetrawatt.com (\rightarrow Products \rightarrow Software \rightarrow Softwa	re for Testers)	
variable plug adapter act and plactic		1	,	· · · · · · · · · · · · · · · · · · ·	
variable plug adapter set and plastic system case SORTIMO L-BOXX GM	TECH plus Starter		^D Data sheet available		

Edited in Germany • Subject to change without notice • PDF version available on the Internet

GMC-I Messtechnik GmbH Südwestpark 15 90449 Nürnberg • Germany Phone: +49 911 8602-111 Fax: +49 911 8602-777 E-mail: info@gossenmetrawatt.com www.gossenmetrawatt.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital Multimeters category:

Click to view products by Gossen Metrawatt manufacturer:

Other Similar products are found below :

 6111-517
 FS881
 40705X
 C.A 6133 LAUNCH KIT
 P 1020 A
 P 3340
 SEFRAM7303
 BS K-CLIP
 19290
 DM285-FLEX-KIT
 IBT6K
 1000

 219
 1001-613
 1006-969
 1008-221
 1012-597
 1013-099
 30XR
 34XR
 35XP
 TESTO 745
 0590 7450
 TESTO 760-2
 0590 7602
 TESTO 760-3

 0590
 7603
 440012
 AX-155
 AX-174
 AX-178
 AX-18B
 AX-190A
 AX-503
 AX-507B
 AX-594
 AX-LCR42A
 AX-MS811
 AX-MS8250
 AX

 PDM01
 AX-T520
 AX-T901
 AX-T903
 BAT-250-EUR
 BM5255
 BM8055
 BM8075
 BM8175
 BM8275
 BM8275
 BM8575
 BM8595

 BM8675
 BM9075
 BM9075
 BM9075
 BM8075
 BM8075
 BM8075
 BM8275
 BM8575
 BM8595