

3-349-350-03 16/10.19

## METRAHIT AM BASE, AM PRO, AM TECH, AM XTRA \* Advanced Multimeters Outdoor Special Multimeter

\* This datasheet also applies to the previous models METRAHIT BASE/PRO/TECH/X-TRA, now AM BASE/AM PRO/AM TECH/AM XTRA

- Digital Hand-Held Multimeters with RMS Measurement V<sub>AC TRMS</sub>, V<sub>AC+DC TRMS</sub>, V<sub>DC</sub>, Hz (V), Hz (A), Ω, V→⊢, °C/°F (TC)
- 4½-place display (11,999 digits), with display illumination

#### **METRAHITAM BASE**

 Current measurement via clip-on current sensors: The transformation factor is adjustable from 1 mV:1 mA to 1 mV:1 A and is accounted for by the display.

#### METRAHIT AM TECH

- Direct Current measurement with increased accuracy and Current measurement, via clip-on current transformer and sensors
- Broad range capacitance measurement

#### METRAHIT AM XTRA / AM TECH / AM PRO / OUTDOOR

- Additional "low-resistance" (1 MΩ) alternating voltage measurement
- 1 kHz / -3 dB low-pass filter can be activated

#### METRAHIT AM XTRA / OUTDOOR

- Direct current measurement from 10 nA to 10 A, 16 A for short periods
- Temperature measurement with Pt100(0) resistance thermometer
- Broad range capacitance measurement
- Frequency and duty cycle measurement at 2 to 5 V signals or up to 1 MHz
- Data memory and bidirectional infrared interface

#### METRAHIT OUTDOOR

 Extremely rugged, dust and water-proof variant with IP 65 protection



## Applications

The multimeter is suitable for universal use in electrical engineering, electrical installation, laboratory applications, telecommunication, training etc.

The instrument can be used in the field and is equipped with internal, mains-independent supply power.

## Features

#### Three Connector Jacks with Automatic Blocking Sockets (ABS) 1)

All current ranges are implemented via a single connector jack which prevents any possibility of operator error. Beyond this, the automatic blocking sockets prevent incorrect connection of the measurement cables, as well as selection of the wrong measured quantity. Danger to the user, the instrument and the device under test resulting from operator error is thus ruled out.

<sup>1)</sup> Patented (patent no. EP 1801 598, US 7,439,725)

#### **Overload Protection**

The instrument is safeguarded for up to 1000 V in all measuring functions by overload protection. Voltages of greater than 1000 V and current of greater than 10 or 16 A are indicated acoustically. Dangerous contact voltages are indicated when the 1 kHz low-pass filter is activated.

The FUSE display appears at **METRAHIT AM XTRA / OUTDOOR**, **METRAHIT AM TECH** and **METRAHIT AM PRO** instruments in order to indicate that the fuse for the current measuring input has blown.

### **RMS Value with Distorted Waveshape**

The utilized measuring method allows for waveshape independent RMS measurement (TRMS AC and AC+DC) for voltage and current (METRAHIT AM XTRA / OUTDOOR up to 20 kHz).

#### Activatable Filter for V AC Measurement

A 1 kHz low-pass filter can be activated if required, for example when measuring motor voltage at electronic frequency converters. The input signal is checked by a voltage comparator for dangerous voltages as long as the low-pass filter is activated.

### Measuring 5 V Square-Wave Signals with the METRAHIT AM XTRA / OUTDOOR

This function makes it possible to test circuits and transmission cables by measuring the frequency and the duty cycle of pulses with amplitudes of 2 to 5 V and frequencies of 100 Hz to 1 MHz.

### Analog Scale for Quick Trend Display – Bar Graph or Pointer

The analog scale (with additional negative range for zerofrequency quantities) allows for faster recognition of measured value fluctuation than is possible with a digital display. The instrument can be switched back and forth between bar graph and pointer display.

**Overview** 

#### Automatic or Manual Measuring Range Selection

Measured quantities are selected by means of a rotary switch and a function key. The measuring range is automatically matched to the measured values. The measuring range can also be selected and fixed manually with a key.

#### **Fast Acoustic Continuity Test**

Testing for short circuiting and interruption is possible with the selector switch in the  $\mathbf{Q}$ ) position. The threshold value for acoustic signaling can be set to 1, 10, 20, 30, 40 or 90  $\Omega$ .

#### Automatic Storage of Measured Values \*

The DATA function automatically saves the digitally displayed measured value after settling in. Acoustic signaling is also used to indicate whether the new measured value deviates from the initial reference value by less or more than 0.1% of the measuring range. \* Patented

#### Storage of Min-Max Values

Comparable to the slave-pointer function of an analog instrument, the device saves the highest and lowest measured values after the MIN/MAX function has been activated or reset. These extreme values can be queried at the display.

#### Battery Charging Status - Power Saving Circuit

The battery charging status is indicated by means of four symbols. The device is switched off automatically if the measured value remains unchanged for a period of between 10 and 59 minutes (adjustable), and if none of the controls are activated during this time. Automatic shutdown can be deactivated by switching the instrument to continuous operation.

METRAHIT AM XTRA / OUTDOOR: The infrared interface can be switched off in the standby mode.

#### **Protective Cover for Harsh Conditions**

The instrument is protected against damage in the event of impacts or dropping by means of a soft rubber cover with tilt stand and test probe holder. The rubber material also assures that the instrument does not wander if it is set up on a vibrating surface.

#### Infrared Data Interface with METRAHIT AM XTRA / OUTDOOR

The device can be remote configured, and momentary and stored measurement data can be read out via the bidirectional infrared interface. The USBX-TRA interface adapter and METRAwin 10 software are required to this end (see accessories). Interface protocol and device driver software for LabVIEW® (National Instruments<sup>™</sup>) are available upon request.

#### **DAkkS Calibration Certificate**

The multimeters are furnished with an internationally valid DAkkS calibration certificate (recognized by EA and ILAC). After the specified calibration interval has elapsed (recommended interval: 1 to 3 years), the multimeters can be inexpensively recalibrated in our own DAkkS calibration laboratory.

## Applicable Regulations and Standards

| IEC/DIN EN 61010 -1<br>VDE 0411-1 | Safety requirements for electrical equipment for measurement, control and laboratory use                                 |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| DIN EN 61326-1<br>VDE 0843-20-1   | Electrical equipment for measurement, control and laboratory<br>use – EMC requirements –<br>Part 1: General requirements |
| DIN EN 60529<br>Din VDE 0470-1    | Test instruments and test procedures<br>– degrees of protection provided by enclosures (IP code)                         |

| Function                                 | METRAHIT<br>AM XTRA<br>Outdoor | METRAHIT<br>Am tech          | METRAHIT<br>AM PRO | METRAHIT<br>Am Base                                                          |  |
|------------------------------------------|--------------------------------|------------------------------|--------------------|------------------------------------------------------------------------------|--|
| V AC / Hz TRMS (Ri $\geq$ 9 M $\Omega$ ) | & 1kHz \ Filter                | & 1kHz \ Filter              | & 1kHz \ Filter    | •                                                                            |  |
| V AC TRMS<br>(Ri = 1 MΩ)                 | & 1kHz \ Filter                | & 1kHz \ Filter              | & 1kHz \ Filter    | _                                                                            |  |
| V AC+DC TRMS (Ri $\ge$ 9 M $\Omega$ )    | •                              | •                            | •                  | •                                                                            |  |
| V DC (Ri ≥ 9 MΩ)                         | •                              | •                            | •                  | •                                                                            |  |
| 1 MHz 5 V AC                             | •                              | —                            | _                  | —                                                                            |  |
| Duty cycle as %                          | •                              | —                            | _                  | _                                                                            |  |
| Hz (V AC)                                | 100 kHz                        | 100 kHz                      | 100 kHz            | 100 kHz                                                                      |  |
| Bandwidth, V AC                          | 15 Hz 20 kHz                   | 15 Hz 10 kHz                 | 15 Hz 10 kHz       | 15 Hz 1 kHz                                                                  |  |
| A AC / Hz TRMS                           | 100 µA                         | 10/100 mA<br>1 A / 10 (16) A | 1 A / 10 (16) A    | —                                                                            |  |
| A AC+DC TRMS                             | 1/10/100 mA                    |                              |                    | —                                                                            |  |
| A DC                                     | 1 A / 10 (16) A                |                              |                    | —                                                                            |  |
| Fuse                                     | 10 A/1000 V                    | 10 A/1000 V                  | 10 A/1000 V        | —                                                                            |  |
| Transformation factor                    | •                              | •                            | •                  | •                                                                            |  |
| A AC $>$ <sup>1)</sup> / Hz TRMS         | mV/A<br>mA/A                   | mV/A<br>mA/A                 | mV/A<br>mA/A       | $\begin{array}{l} \text{mV/A} \\ \text{Ri} = 1 \ \text{M}\Omega \end{array}$ |  |
| A AC+DC $>$ C <sup>1)</sup> TRMS         | mV/A<br>mA/A                   | mV/A<br>mA/A                 | mV/A<br>mA/A       | $\begin{array}{l} \text{mV/A} \\ \text{Ri} = 1 \ \text{M}\Omega \end{array}$ |  |
| ADC $>$ C <sup>1)</sup>                  | mV/A<br>mA/A                   | mV/A<br>mA/A                 | mV/A<br>mA/A       | $\begin{array}{c} \text{mV/A} \\ \text{Ri} = 1 \ \text{M}\Omega \end{array}$ |  |
| Hz (A AC)                                | 30 kHz                         | 30 kHz                       | 30 kHz             | 30 kHz                                                                       |  |
| Resistance $\Omega$                      | •                              | •                            | •                  | •                                                                            |  |
|                                          |                                |                              |                    |                                                                              |  |

•

•

•

•

•

•

.

IP65

1000 V CAT III

600 V CAT IV

•

•

•

•

IP52

1000 V CAT III

600 V CAT IV

•

•

•

\_

IP52

1000 V CAT III

600 V CAT IV

1) Clamp function METRAHIT AM XTRA and AM PRO as of firmware version 3.04 <sup>2)</sup> for 15,400 measured values, sampling rate adjustable from 0.1 second to 9 hours

•

•

•

IP52

1000 V CAT III

600 V CAT IV

## Standard Equipment

Multimeter 1

Continuity

Diode ... 5.1 V -

Temperature RTD

Capacitance –

MIN/MAX / data hold

Power pack adapter socket

Measuring category

4 MBit memory <sup>2)</sup>

**IR Interface** 

Protection

Temperature TC (K)

**山**)

- Pair of safety measurement cables with 4 mm test probes, 1 1000 V CAT III, 600 V CAT IV (KS17-2)
- 2 Batteries, 1.5 V, type AA
- 1 DAkkS calibration certificate
- Protective rubber cover (METRAHIT AM XTRA / OUTDOOR only) 1
- Short-form operating instructions \*, English/German 1
- Detailed operating instructions are available for download on the Internet at www.gossenmetrawatt.com

## Voluntary Manufacturer's Guarantee

36 months for materials and workmanship

1 to 3 years for calibration (depending upon application)

## **Characteristic Values**

| Meas.              | Moonuring Don                       |                      | n at Upper<br>e Limit | Input Im             | pedance                                     | ±( % rdq. + d)         | ertainty under Referend<br>$\pm(\% rdg. +d)$ | $\pm ( \% rdg. + d)$                   | Overload C               | apacity <sup>2)</sup> |
|--------------------|-------------------------------------|----------------------|-----------------------|----------------------|---------------------------------------------|------------------------|----------------------------------------------|----------------------------------------|--------------------------|-----------------------|
| Function           | Measuring Range                     | 11,999               | 1199                  |                      | ~/≂                                         |                        | ∼ <sup>10)</sup>                             | ≂( /s rug. r u)<br>≂ <sup>10)</sup>    | Value                    | Time                  |
|                    | 100 mV                              | 10 µV                |                       | ≥9 MΩ                | $\geq$ 9 M $\Omega$ // < 50 pF              | 0.09 + 5 with ZER0     | 1 + 30 (> 300 d) <sup>1)</sup>               | 1 + 30 (> 300 d) <sup>i)</sup>         | 4000.1/                  |                       |
|                    | 1 V                                 | 100 μV               |                       | $\geq 9 M\Omega$     | $\geq 9 \text{ M}\Omega // < 50 \text{ pF}$ | 0.05 + 3               | 0.5 + 9 (> 200 d)                            | 1 + 30 (> 300 d)                       | 1000 V<br>DC             |                       |
| v                  | 10 V                                | 1 mV                 |                       | $\ge 9 M\Omega$      | $\geq$ 9 M $\Omega$ // < 50 pF              | 0.05 + 3               | 0.5 + 9 (> 200 d)                            | 1 + 30 (> 300 d)                       | AC                       | Continuou             |
| •                  | 100 V                               | 10 mV                |                       | $\geq 9 M\Omega$     | $\geq 9 \text{ M}\Omega // < 50 \text{ pF}$ | 0.05 + 3               | 0.5 + 9 (> 200 d)                            | 1 + 30 (> 300 d)<br>1 + 30 (> 300 d)   | RMS                      | Continuou             |
|                    | 100 V                               | 100 mV               |                       | ≥ 9 MΩ               | $\geq$ 9 M $\Omega$ // < 50 pF              | 0.09 + 3               | 0.5 + 9 (> 200 d)                            | 1 + 30 (> 300 d)                       | sine                     |                       |
|                    | 1000 v                              | 100 111              |                       |                      | at upper range limit                        | 1                      | 0.3 + 9 (≥ 200 u)<br>~ <sup>10)</sup>        | = 1 + 30 (≥ 300 u)<br>≂ <sup>10)</sup> |                          |                       |
| Α                  | 100 μA                              | 10 nA                |                       | 12 mV                | 12 mV                                       | 0.5 + 5                | 1.5 + 10 (> 200 d)                           | ~<br>1.5 + 30 (> 200 d)                |                          |                       |
|                    |                                     | 100 nA               |                       | 120 mV               | 120 mV                                      | 0.5 + 3                | 1.5 + 10 (> 200 d)                           | 1.5 + 30 (> 200 d)                     | _                        |                       |
| AM XTRA            | 10 mA                               | 1 µA                 |                       | 16 mV                | 16 mV                                       | 0.5 + 3                | 1.5 + 10 (> 200 d)                           | 1.5 + 30 (> 200 d)                     | 0,2 A                    | Continuous            |
| 0                  | 100 mA                              | 10 μA                |                       | 160 mV               | 160 mV                                      | 0.5 + 3                | 1.5 + 10 (> 200 d)                           | 1.5 + 30 (> 200 d)                     | _                        |                       |
| <b>O</b> UTDOOR    | 4 1 mA<br>10 mA<br>100 mA<br>100 mA | 100 μA               |                       | 40 mV                | 40 mV                                       | 0.9 + 10               | 1.5 + 10 (> 200 d)                           | 1.5 + 30 (> 200 d)                     | 10 4. 75                 |                       |
| AM PRO             |                                     | 1 mA                 |                       | 600 mV               | 600 mV                                      | 0.9 + 10               | 1.5 + 10 (> 200 d)                           | 1.5 + 30 (> 200 d)                     | 10 A: ≤ 5<br>16 A: ≤ 3   | 20 . 11)              |
| AWITTO             | 10 A                                |                      |                       | 16 mV                | 16 mV                                       | 0.9 + 10               |                                              |                                        | 10 A. 2 (                | 10 3                  |
| Α                  |                                     | 1 μA                 |                       | -                    |                                             |                        | 1 + 10 (> 200 d)                             | 1.5 + 30 (> 200 d)                     | 0,2 A                    | Continuous            |
|                    | <b>H</b> 100 mA                     | 10 µA                |                       | 160 mV               | 160 mV                                      | 0.1 + 5                | 1 + 10 (> 200 d)                             | 1.5 + 30 (> 200 d)                     |                          | . 11)                 |
| AM TECH            | WE 10 A                             | 100 µA               |                       | 40 mV                | 40 mV                                       | 0.9 + 10               | 1 + 10 (> 200 d)                             | 1.5 + 30 (> 200 d)                     | 10 A: ≤ 5<br>16 A: ≤ 3   | min '''               |
|                    | 10 A                                | 1 mA                 |                       | 600 mV               | 600 mV                                      | 0.9 + 10               | 1 + 10 (> 200 d)                             | 1.5 + 30 (> 200 d)                     | 10 A: ≤ .                | 50 S · · ·            |
|                    | Factor: 1:1/10/100/1000             | Input                |                       | Input Im             | pedance                                     |                        |                                              |                                        |                          |                       |
| A>C                | 0,1/1/10/100 A                      | 100 mA               |                       | Current me           | asuring input                               | Spe                    | cification see current rar                   | iges                                   | Measurir                 | •                     |
| not                | 1/10/100/1000 A                     | 1 A                  |                       | (mA/A S              | socket)                                     |                        |                                              | 0                                      | 0,2 A cor                |                       |
| AM BASE            | 10/100/1000/10000A                  | 10 A                 |                       | ······ /             |                                             | plus c                 | clip-on current senso                        | r error                                | 10 A: :                  | 5 min                 |
| A>C                | 0.1/1/10/100 A                      | 100 mV               |                       | Voltage measuri      | ng input socket V                           | ±(0.5% rdg. + 10 d)    | ±(1 % rdg. + 30 d)                           | ±(1 % rdg. + 30 d)                     | Measurem                 | ent input             |
|                    | 1/10/100/1000 A                     | 1 V                  |                       | Ri = 1 Ms            | $\Omega / 9 M\Omega$                        |                        | > 300 d                                      | > 300 d                                | 1000 V RMS               | May 10 s              |
|                    | 10/100/1000/10000A                  | 10 V                 |                       |                      | t <b>X</b> V Ri ~1 MΩ                       | Plus c                 | clip-on current senso                        | r error                                | 1000 111110              | - WILLAN. 10 3        |
|                    |                                     |                      |                       | Open-circuit voltage | Meas. curr. @ range limit                   |                        | lg. + d)                                     |                                        |                          |                       |
|                    | 100 Ω                               | 10 mΩ                |                       | < 1.4 V              | Approx. 300 µA                              | 0.2 + 5                | with active ZERO function                    |                                        |                          |                       |
|                    | 1 kΩ                                | $100 \text{m}\Omega$ |                       | < 1.4 V              | Approx. 250 µA                              | 0.2 + 5                |                                              |                                        |                          |                       |
|                    | 10 kΩ                               | 1 Ω                  |                       | < 1.4 V              | Approx. 100 µA                              | 0.2 + 5                |                                              |                                        | 1000 V                   |                       |
| Ω                  | 100 kΩ                              | 10 Ω                 |                       | < 1.4 V              | Approx. 12 µA                               | 0.2 + 5                |                                              |                                        | DC                       |                       |
|                    | 1 MΩ                                | 100 Ω                |                       | < 1.4 V              | Approx. 1.2 µA                              | 0.2 + 5                |                                              |                                        | ĂČ                       | Max. 10 s             |
|                    | 10 MΩ                               | 1 kΩ                 | -                     | < 1.4 V              | Approx. 125 nA                              | 0.5 + 10               | )                                            |                                        | RMS                      |                       |
|                    | 40 MΩ                               | 10 kΩ                |                       | < 1.4 V              | Approx. 20 nA                               | 2.0 + 10               | )                                            |                                        | sine                     |                       |
| <b>¤</b> ())       | 100 Ω                               | —                    | 0.1 Ω                 | Approx. 8 V          | Approx. 1 mA const.                         | 3 + 5                  |                                              |                                        |                          |                       |
| ₩                  | 5,1 V <sup>3)</sup>                 | —                    | 1 mV                  | Approx. 8 V          | Approx. 1 mA const.                         | 0.5 + 3                |                                              |                                        |                          |                       |
|                    |                                     |                      |                       | Discharge resist.    | U <sub>0 max</sub>                          | ±( % rc                | la. + d)                                     |                                        |                          |                       |
| F                  | 10 nF                               |                      | 10 pF                 | 10 MΩ                | 0.7 V                                       |                        | with ZERO function active                    |                                        |                          |                       |
|                    | 100 nF                              |                      | 100 pF                | 1 MΩ                 | 0.7 V                                       | 1 + 6 4)               |                                              |                                        | 1000 V                   |                       |
| AM XTRA            | 1 μF                                |                      | 1 nF                  | 100 kΩ               | 0.7 V                                       | 1 + 6 4)               |                                              |                                        | DC                       |                       |
| <b>O</b> UTDOOR    | 10 μF                               |                      | 10 nF                 | 12 kΩ                | 0.7 V                                       | 1 + 6 4)               |                                              |                                        | AC                       | Max. 10 s             |
| Corboon            | 100 µF                              |                      | 100 nF                | 3 kΩ                 | 0.7 V                                       | $5 + 6^{-4}$           |                                              |                                        | RMS<br>sine              |                       |
| AM TECH            | 1000 µF                             |                      | 1 μF                  | 3 kΩ                 | 0.7 V                                       | 5 + 6 4)               |                                              |                                        | Gino                     |                       |
|                    | p.:                                 |                      |                       |                      | f <sub>min</sub> <sup>5)</sup>              | ±( % rdg. + d)         |                                              |                                        |                          |                       |
| Hz (V)             | 100.00 Hz                           | 0.01 Hz              |                       |                      | ·min                                        | ⊥( /010g. 1 u)         |                                              |                                        |                          |                       |
|                    | 1.0000 kHz                          | 0.1 Hz               | -                     |                      |                                             |                        |                                              |                                        | Hz (V) 6).               |                       |
| Hz (A)             |                                     |                      | -                     |                      | 1 Hz                                        |                        |                                              |                                        | Hz (A>C) <sup>0)</sup> : |                       |
| Hz (A>c)           | 10.000 kHz                          | 1 Hz                 |                       |                      |                                             | 0.05 + 3 <sup>8)</sup> |                                              |                                        | 1`000 Ý                  | Max. 10 s             |
| Hz (V)             | 100.00 kHz                          | 10 Hz                |                       |                      | 10 Hz                                       |                        |                                              |                                        | Hz (A): <sup>7)</sup>    |                       |
| Hz (A)             | 30.00 kHz                           | 10 Hz                | -                     |                      | 10 Hz                                       |                        |                                              |                                        | T12 (A).                 |                       |
| MHz                |                                     |                      |                       |                      |                                             |                        |                                              |                                        |                          |                       |
| AM XTRA            | 100 Hz 1 MHz                        | 0,01                 |                       |                      | 1 100 Hz                                    | 0.05 + 3               | > 2 V 5 V                                    |                                        |                          |                       |
| OUTDOOR            | 100112111111112                     | 100 Hz               |                       |                      | 1 11 100 112                                | 0.00 1 0               | 211101                                       |                                        |                          |                       |
| %                  | 2.0 98 %                            | _                    | 0.01%                 | 15 Hz 1 kHz          |                                             | 0.1 R                  | > 2 V 5 V                                    |                                        | 1000 V                   | Max. 10 s             |
|                    | 5.0 95 %                            | _                    | 0.01%                 | 1 kHz 10 kHz         |                                             | 0.1 R per kHz          | > 2 V 5 V                                    |                                        |                          |                       |
| AM XTRA<br>Outdoor | 10 90 %                             | _                    | 0.01%                 | 10 kHz 100 kHz       |                                             | 0.1 R per kHz          | > 2 V 5 V                                    |                                        |                          |                       |
| JUIDOOK            | 10 30 /0                            |                      | 0.01/0                | 10 NH2 100 NH2       |                                             |                        |                                              |                                        |                          |                       |
|                    | D+ 100                              |                      |                       |                      |                                             | ±( % ľ0                | lg. + d)                                     |                                        |                          |                       |
|                    | Pt 100<br>AM XTRA - 200.0           |                      |                       |                      |                                             | 0.3 + 15               | <del>,</del> 9)                              |                                        |                          |                       |
|                    | <b>OUTD.</b> +850.0 °C              |                      |                       |                      |                                             | 0.5 + 13               | · ر                                          |                                        | 1000 V                   |                       |
|                    | Dt 1000                             |                      |                       |                      |                                             |                        |                                              |                                        | DC/AC                    |                       |
| °C/°F              | AM XTRA _ 150.0                     | 0.1 °C               |                       |                      |                                             | 0.3 + 15               | 5 <sup>9)</sup>                              |                                        | RMS                      | Max. 10 s             |
|                    | 0010.                               |                      |                       |                      |                                             |                        |                                              |                                        | Sine                     |                       |
|                    | K - 250.0                           |                      |                       |                      |                                             | 1%+5                   | К 9)                                         |                                        |                          |                       |
|                    | (NiCr-Ni) +1372.0 °C                |                      |                       |                      |                                             | 1,010                  |                                              |                                        |                          |                       |
| \                  |                                     |                      |                       |                      |                                             |                        |                                              |                                        |                          |                       |

<sup>1)</sup> Values of less than 200 digits are suppressed in the mV range

<sup>2)</sup> At 0 ° ... + 40 °C

<sup>3)</sup> Displays up to max. 5.1 V, "OL" in excess of 5.1 V

<sup>4)</sup> Applies to measurements at film capacitors

5) Lowest measurable frequency for sinusoidal measuring signals symmetrical to the zero point (a) Overload capacity of the voltage measurement input: power limiting: frequency x voltage max.  $3 \times 10^6$  V x Hz for U > 100 V

7) Overload capacity of the current measurement input:

See current measuring ranges for maximum current values <sup>8)</sup> Input sensitivity, sinusoidal signal, 10% to 100% of the measuring range

<sup>9)</sup> Plus sensor deviation

<sup>10)</sup> Residual value deviates within 1 ... 30 d from the zero point due to TRMS converter when probe tips are short-circuited. See frequency influence on page 4 <sup>11)</sup>Off-time > 30 min. and  $T_A \le 40 \text{ °C}$ 

Key: d= digit(s), R = measuring range, rdg. = measured value (reading)

### Internal Clock

| DD.MM.YYYY hh:mm:ss |
|---------------------|
| 0.1 s               |
| ±1 min. per month   |
| 50 ppm/K            |
|                     |

## Influencing Quantities and Influence Error

| Influencing<br>Quantity | Sphere of<br>Influence                   | Measured Quantity /<br>Measuring Range <sup>1)</sup> | Influence Error<br>(% rdg. + d) / 10 K |          |
|-------------------------|------------------------------------------|------------------------------------------------------|----------------------------------------|----------|
|                         |                                          | V <del></del>                                        | 0.2 + 10                               |          |
|                         |                                          | V~                                                   | 0.4 + 10                               |          |
|                         |                                          | 100 Ω 1 MΩ                                           | 0.5 + 10                               |          |
|                         |                                          | $> 1 M\Omega$                                        | 1 + 10                                 |          |
| Temperature             | re -10 °C +21 °C<br>and<br>+25 °C +50 °C | mA/A <del></del>                                     | 0.5 + 10                               |          |
| remperature             |                                          |                                                      | mA/A 😎                                 | 0.8 + 10 |
|                         |                                          | 10 nF 100 μF                                         | 1 + 5                                  |          |
|                         |                                          | Hz                                                   | 0.2 + 10                               |          |
|                         |                                          | °C/°F (Pt100/Pt1000)                                 | 0.5 + 10                               |          |
|                         | -                                        | °C/°F thermocouple K                                 | 0.2 + 10                               |          |

| Influencing<br>Quantity     | Sphere of Influence                                                                                                       | Measured Quantity /<br>Measuring Range | Damping  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------|
|                             | Interference quantity max. 1000 V $\sim$                                                                                  | V <del></del>                          | > 120 dB |
| Common Mode                 |                                                                                                                           | 1 V $\sim$ , 10 V $\sim$               | > 80 dB  |
| Voltage                     | Interference quantity max. 1000 V $\sim$ 50 Hz 60 Hz, sine                                                                | 100 V ~                                | > 70 dB  |
|                             |                                                                                                                           | 1000 V $\sim$                          | > 60 dB  |
| Series Mode<br>Interference | Interference quantity: V $\sim$ , respective nominal value of the measuring range, max. 1000 V $\sim$ , 50 Hz 60 Hz, sine | V                                      | > 50 dB  |
| Voltage                     | Interference quantity max. 1000 V -                                                                                       | V~                                     | > 110 dB |

## **Reference Conditions**

| Ambient temperature     | +23 °C ±2 K |
|-------------------------|-------------|
| Relative humidity       | 40 75%      |
| Measured qty. frequency | 45 65 Hz    |
| Measured qty. waveshape | Sine        |
| Battery voltage         | 3 V ±0.1 V  |

1) With zero balancing

|                       | Meas. Qty. /<br>Meas. Range Sphere of Influence |                          | Intrinsic Uncertainty $^{3)}$<br>$\pm$ ( % rdg. + d) |                                                                             |                 |
|-----------------------|-------------------------------------------------|--------------------------|------------------------------------------------------|-----------------------------------------------------------------------------|-----------------|
| Influenc-<br>ing Qty. |                                                 |                          | Sphere of Influence                                  | METRAHIT AM XTRA<br>METRAHIT OUTDOOR<br>METRAHIT AM TECH<br>METRAHIT AM PRO | METRAHITAM BASE |
|                       |                                                 |                          | >15 Hz 45 Hz                                         | 3 + 30                                                                      | 3 + 30          |
|                       |                                                 | 100.00 mV                | >65 Hz 1 kHz                                         | 2 + 30                                                                      | 3 + 30          |
|                       |                                                 |                          | >1 kHz 10 kHz                                        | 3 + 30                                                                      | _               |
|                       |                                                 | 1.0000 V<br><br>100.00 V | >15 Hz 45 Hz                                         | 2 + 9                                                                       | 3 + 9           |
|                       | V <sub>AC</sub>                                 |                          | >65 Hz 1 kHz                                         | 1 + 9                                                                       | 3 + 9           |
|                       |                                                 |                          | > 1 kHz10/20kHz <sup>4)</sup>                        | 3 + 9                                                                       | _               |
| Fre-                  |                                                 |                          | >15 Hz 45 Hz                                         | 2 + 9                                                                       | 3 + 9           |
| quency                |                                                 | 1000.0 V <sup>2)</sup>   | >65 Hz 1 kHz                                         | 2 + 9                                                                       | 3 + 9           |
|                       |                                                 |                          | >1 kHz 10 kHz                                        | 3 + 30                                                                      | —               |
|                       | A <sub>AC</sub>                                 | 100.00 μA                | >15 Hz 45 Hz                                         | 0.40                                                                        |                 |
|                       | AU                                              | <br>10.0000 A            | >65 Hz 10 kHz                                        | 3 + 10                                                                      | _               |
|                       | A <sub>AC</sub><br>>C                           | 100 mV /<br>1 V / 10 V   | >65 Hz 1 kHz                                         | _                                                                           | 3 + 10          |

Power limiting: frequency x voltage max. 3 x 10<sup>6</sup> V x Hz for U > 100 V

<sup>3)</sup> The accuracy specification for frequency response is valid within a display value range of 10% to 100% of the measuring range for both measuring modes with the TRMS converter in the AC and (AC+DC) ranges.
 <sup>4)</sup> METRAHIT AM XTRA / Outpoor: Frequency response up to 20 kHz.

| WILTHATHT AW ATHA / OUTDOON. | riequency response up to 20 kmz, |
|------------------------------|----------------------------------|
| METRAHIT AM TECH:            | Frequency response up to 10 kHz, |
| METRAHIT AM PRO:             | Frequency response up to 10 kHz, |
| METRAHITAM BASE:             | Frequency response up to 1 kHz   |
|                              |                                  |

| Influencing<br>Quantity | Sphere of<br>Influence | Measured Quantity/<br>Measuring Range | Influence Error <sup>5)</sup> |
|-------------------------|------------------------|---------------------------------------|-------------------------------|
| Crest factor CF         | 1 3                    |                                       | ± 1 % rdg.                    |
| GIEST INCLUI OF         | > 3 5                  | - V ∼, A ~                            | ± 3 % rdg.                    |

<sup>5)</sup> Except for sinusoidal waveshape

| Influencing<br>Quantity | Sphere of<br>Influence | Measured Quantity  | Influence Error                        |
|-------------------------|------------------------|--------------------|----------------------------------------|
|                         | 75%                    |                    |                                        |
| Relative<br>humidity    | 3 days                 | V, A, Ω, F, Hz, °C | 1 x intrinsic uncertainty              |
|                         | instrument off         |                    |                                        |
| Battery voltage         | 2.0 to 3.6 V           | ditto              | Included in intrinsic uncer-<br>tainty |

## Response Time (after manual range selection)

| Measured Quantity /<br>Measuring Range | Response Time<br>Digital Display | Measured Quantity<br>waveshape              |
|----------------------------------------|----------------------------------|---------------------------------------------|
| V , V ~<br>AV , A ~                    | 1.5 s                            | From 0 to 80%<br>of upper range limit value |
| 100 Ω 1 MΩ                             | 2 s                              |                                             |
| 10/40 MΩ                               | 5 s                              |                                             |
| Continuity                             | < 50 ms                          | From ∞ to 50%<br>of upper range limit value |
| °C (Pt 100)                            | Max. 3 s                         |                                             |
| +                                      | 1.5 s                            | -                                           |
| 10 nF 100 μF                           | Max. 2 s                         |                                             |
| 1 000 μF                               | Max. 7 s                         | From 0 to 50%<br>of upper range limit value |
| >10 Hz                                 | 1.5 s                            |                                             |

## Data Interface (METRAHIT AM XTRA / OUTDOOR only)

Type Data transmission Protocol Baud rate Functions Optical via infrared light through the housing Serial, bidirectional (not IrDa compatible) Device specific

38,400 baud

– Select/query measuring functions

- and parameters
- Query momentary measurement data
- Read out stored measurement data

The USBX-TRA plug-in interface adapter (see accessories) is used for adaptation to the PC's USB port.

## Internal Measured Value Storage (METRAHIT AM XTRA / OUTDOOR only)

Memory capacity

4 MBit / 540 kB for approx. 15,400 measured values with date and time stamp

## **Power Supply**

| Battery               | 2 ea. 1.5 V mignon cell (2 ea. size AA),<br>alkaline manganese per IEC LR6<br>(2 ea. 1.2 V NiMH rechargeable battery<br>also possible)                                                                                                                                       |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Service life          | with alkaline manganese: approx. 200 hours                                                                                                                                                                                                                                   |
| Battery test          | Battery capacity display with battery symbol in 4 segments: <b>SS</b> . Querying of momentary battery voltage via menu function.                                                                                                                                             |
| Power OFF function    | Multimeter is switched off automatically:<br>– If battery voltage drops to below prox. 2.0 V<br>– If none of the keys or the rotary switch<br>are activated for an adjustable duration<br>of 10 to 59 minutes, and the multimeter<br>is not in the continuous operation mode |
| Power pack socket     |                                                                                                                                                                                                                                                                              |
| (METRAHIT AM XTRA / C | Dutdoor only)                                                                                                                                                                                                                                                                |
|                       | If the NAX-tra power pack has been plugged into the instrument, the batteries                                                                                                                                                                                                |

## Fuse (except for METRAHITAM BASE)

Fuse

FF (UR) 10 A/1000 V AC/DC; 10 mm x 38 mm, Switching capacity: 30 kA at 1000 V AC/DC, protects the current measurement input in the 100  $\mu A$  through 10 A ranges

## **Electrical Safety**

Per IEC 61010-1:2010/VDE 0411-1:2011

| Safety class       |        | П      |       |
|--------------------|--------|--------|-------|
| Measuring category |        |        | IV    |
| Operating voltage  | 1000 V |        | 600 V |
| Pollution degree   |        | 2      |       |
| Test voltage       |        | 6.7 kV | ~     |

## **Electromagnetic Compatibility (EMC)**

Interference emission EN 61326-1: 2013, class B Interference immunity EN 61326-1: 2013 EN 61326-2-1: 2013

## Display

LCD panel (65 mm x 36 mm) with analog and digital display including unit of measure, type of current and various special functions

recharged externally.

are disconnected automatically. Rechargeable batteries can only be

#### **Background illumination**

Background illumination is switched off approximately 1 minute after it has been activated.

#### Analog

| Display          | LCD scale with bar graph or pointer, depend-<br>ing on the selected parameter setting      |
|------------------|--------------------------------------------------------------------------------------------|
| Scaling          | With 4 division lines each, 1 bar/pointer corresponds to 500 digits at the digital display |
| Polarity display | With automatic switching                                                                   |
| Overflow display | With the 🕨 symbol                                                                          |
| Measuring rate   | 40 measurements per second and display refresh                                             |
| Digital          |                                                                                            |

| •                      |                                                                                                                                               |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Display / char. height | 7-segment characters / 15 mm                                                                                                                  |
| Number of places       | $4\frac{1}{2}$ place $\triangleq$ 11,999 steps                                                                                                |
| Overflow display       | "OL" is displayed for ≥12,000 digits                                                                                                          |
| Polarity display       | "–" (minus sign) is displayed if plus pole is connected to " $\perp$ "                                                                        |
| Measuring rate         | 10 and 40 measurements per second with<br>the Min-Max function except for the<br>capacitance, frequency and duty cycle<br>measuring functions |
| Refresh rate           | 2 times per sec., every 500 ms                                                                                                                |

## **Ambient Conditions**

| Accuracy range                       | 0 °C +40 °C                                         |
|--------------------------------------|-----------------------------------------------------|
| Operating temp. range T <sub>A</sub> | −10 °C +50 °C                                       |
| Storage temp. range                  | -25 °C +70 °C (without batteries)                   |
| Relative humidity                    | 4075%, no condensation allowed                      |
|                                      | only METRAHIT OUTDOOR: max. 96%                     |
| Elevation                            | To 2000 m                                           |
| Deployment                           | Indoors, except within specified ambient conditions |

## **Mechanical Design**

| Housing    | Impact resistant plastic (ABS)                                 |
|------------|----------------------------------------------------------------|
| Dimensions | 200 x 87 x 45 mm                                               |
|            | (without protective rubber cover)                              |
| Weight     | Approx. 0.35 kg with batteries                                 |
| Protection | Housing: IP 52 (pressure equalization by means of the housing) |

Extra for **METRAHIT OUTDOOR**: Housing: IP 65

Table excerpt regarding significance of the IP code

| IP XY<br>(1 <sup>st</sup> digit X) | Protection against pene-<br>tration of solid particles | IP XY<br>(2 <sup>nd</sup> digit Y) | Protection against<br>penetration by water |
|------------------------------------|--------------------------------------------------------|------------------------------------|--------------------------------------------|
| 5                                  | Dust protected                                         | 2                                  | Dripping (15° inclination)                 |
| 6                                  | Dust-proof                                             | 5                                  | Jet-water                                  |

## **Acoustic Signals**

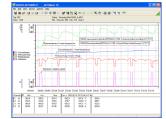
| For voltage | Intermittent signal at above 1000 V |
|-------------|-------------------------------------|
| For current | Intermittent signal at above 10 A   |
|             | continuous signal at above 16 A     |

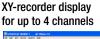
## Accessories for Operation at a PC (METRAHIT AM XTRA / OUTDOOR only)

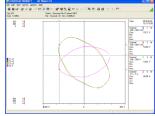
#### Interface Adapter for USB Connection

The USBX-TRA bidirectional interface adapter includes the following functions:

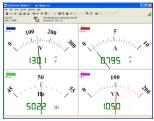
- Configure the METRAHIT AM XTRA / OUTDOOR from a PC.
- Transmit live measurement data to the PC.
- Read out data from memory at the METRAHIT AM XTRA / OUTDOOR.


The adapter does not require a separate power supply. Its baud rate is 38,400 baud.


A CD ROM is included which contains current drivers for Windows operating systems.




For purposes of analysis, data recorded online or read in from the device's memory can be displayed in various formats:


### Y(t)-recorder display for up to 6 channels







Multimeter-display for up to 4 channels



Tabular display for up to 10 channels

| Trig OFF<br>Charc 1234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              | Ξ.                                                                   | RECOR                                                        | DBS ton:<br>57 key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 251 B. 04, 26 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 210.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Care<br>2010.06.20<br>12.11.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                            | C1.U1<br>VAC                                                         |                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2.11<br>AAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _   | C3.1<br>Hg |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CR-ST<br>VR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mec                                                                          | Art.                                                                 | Мек                                                          | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Xin | Arc.       | Max | Mari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Arc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Жж                                                           |
| 2 200<br>2 210<br>2 210<br>2<br>210<br>2<br>210<br>2<br>210<br>2<br>210<br>2<br>210<br>2<br>210 | 1205<br>1205<br>1205<br>1211<br>1211<br>1225<br>1211<br>1225<br>1200<br>1200 | 1306<br>1308<br>1308<br>1308<br>1308<br>1308<br>1308<br>1308<br>1308 | 1266<br>1266<br>1266<br>1268<br>1281<br>1281<br>1281<br>1281 | 8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.000<br>8.0000<br>8.0000<br>8.0000<br>8.0000<br>8.0000<br>8.0000<br>8.0000<br>8.0000<br>8.0000<br>8.0000<br>8.0000<br>8.0000<br>8.0000<br>8.0000<br>8.0000<br>8.0000<br>8.0000<br>8.0000<br>8.0000<br>8.0000<br>8.00000<br>8.0000<br>8.0000<br>8.0000<br>8.0000<br>8.00000<br>8.00000<br>8.00000<br>8.0000000<br>8.00000000 | 0.852<br>0.799<br>0.299<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295<br>0.295 | 0.862<br>0.972<br>0.772<br>0.772<br>0.772<br>0.772<br>0.756<br>0.856<br>0.856<br>0.856<br>0.856<br>0.754<br>0.754<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.759<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0.856<br>0. |     |            |     | 925.2<br>125.2<br>125.2<br>126.2<br>126.2<br>126.2<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3<br>126.3 | 925.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3<br>175.3 | 9233<br>9233<br>9233<br>9233<br>9233<br>9243<br>9243<br>9243 |

#### System Requirements

METRAwin 10 (as of version 6.20) can be run on PCs, notebooks and tablets with Microsoft Windows<sup>®</sup> Vista, 7, 8 or 10.

## METRAwin<sup>®</sup>10/METRAHit<sup>®</sup> Software

METRAwin<sup>®</sup>10/METRAHit<sup>®</sup> software is a multilingual, measurement data logging program for recording, visualizing and documenting measured values from **METRAHIT AM XTRA** / **OUTDOOR** multimeters.

Communication between the PC and the measuring instrument(s) is established via available interfaces and memory adapters. Telephone modems can be interconnected as well.

Depending upon device type, one or several of the following operating modes are possible:

### Device Configuration

Remote configuration and querying of device-specific functions and parameters, for example measuring function, measuring range and memory parameters. Frequently used device settings can be saved to configuration files for easy recall.

### Online Recording of Measurement Data

Read-in, display and recording of momentarily measured data from the interconnected device.

| - | Number | of |  |
|---|--------|----|--|
|   |        |    |  |

| measuring channels                  | up to10                                   |
|-------------------------------------|-------------------------------------------|
| <ul> <li>Start recording</li> </ul> | manual, triggered by measured value, time |

- Recording mode
- triggered
  > time controlled
  - with sampling interval of 0.05 s\* ... 1 s ... 60 min
  - > manually controlled
  - > measured value controlled in event of exceeded limit/delta value
- Recording duration max. 10 million intervals
- \* Depending upon device type, measuring function, number of measuring channels and communication (e.g. via modem), sample intervals of less than 1 s cannot be used.

## Reading Out and Visualizing Stored Data

If supported by the device: read-in and display of offline data recorded to device memory.

## **Order Information**

## Designation Type Article Number METRAHIT AM XTRA, METRAHIT OUTDOOR, METRAHIT AM TECH, METRAHIT AM PRO und METRAHITAM BASE multimeters METRAHIT AM TECH, METRAHIT

4½-place (12,000 digits) TRMS multimeter with direct, alternating and pulsating voltage measurement (TRMS values), frequency measurement, resistance measurement, continuity test, diode measurement andtemperature measurement with type K thermocouples LCD with 15 mm characters, analog bar graph and background illumination Measuring categories: 600 V/CAT IV, 1000 V/CAT III

All multimeters include the KS17-2 measurement cable set, two mignon batteries, condensed operating instructions, CD ROM, DAkkS calibration certificate

| M240A                 |
|-----------------------|
| door M2400            |
| M243A                 |
| M243E                 |
| PRO M242A             |
| M242E                 |
| BAS M241A             |
| / Outdoor only)       |
| Z216C                 |
| GTZ3240000R000<br>0 1 |
| nometer               |
| GTZ3409000R000<br>1   |
| Z102A                 |
| GTZ3408000R000<br>1   |
|                       |
| 2 Z109L               |
|                       |

| Designation                                                | Туре    | Article Number |  |  |
|------------------------------------------------------------|---------|----------------|--|--|
| Accessories                                                |         |                |  |  |
| Power pack<br>(for <b>METRAHIT AM XTRA / Outdoor</b> only) | NAX-tra | Z218G          |  |  |
| Protective rubber cover and carrying strap                 | GHX-tra | Z104C          |  |  |

## **Transport Accessories**

### HitBag Cordura Belt Pouch

For **METRAHIT** multimeters (with/without protective rubber cover) and METRAport HC20 Hard Case

For multimeter (with/without protective rubber cover) and accessories

**GOSSEN METRAWATT** 



## F836 Ever-Ready Case

For multimeter and accessories

F829 Carrying Pouch For multimeters (with/without protective rubber cover) and accessories



| Designation                                                                        | Туре    | Article Number  |  |  |  |  |  |
|------------------------------------------------------------------------------------|---------|-----------------|--|--|--|--|--|
| Imitation leather without protective rubber cover for <b>METRAHIT</b> and METRAmax | F829    | GTZ3301000R0003 |  |  |  |  |  |
| Cordura belt pouch for <b>METRAHIT</b><br>multimeters and METRAport                | HitBag  | Z115A           |  |  |  |  |  |
| Imitation leather ever-ready case with cable compartment                           | F836    | GTZ3302000R0001 |  |  |  |  |  |
| Belt pouch large                                                                   | HitBag+ | Z115B           |  |  |  |  |  |
| Hard case for one <b>METRAHIT</b> and accessories                                  | HC20    | Z113A           |  |  |  |  |  |
| Hard case for two <b>METRAHIT</b> and accessories                                  | HC30    | Z113B           |  |  |  |  |  |

For additional information regarding accessories please refer to:

- our Measuring Instruments and Testers catalog.
- our website www.gossenmetrawatt.com

|                    |                                                                                          |                                                      |                                   |                   |                                     |                           |                                      | Suitable for<br>METRA <b>HIT</b> |            |                                  |
|--------------------|------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------|-------------------|-------------------------------------|---------------------------|--------------------------------------|----------------------------------|------------|----------------------------------|
| Туре               | Designation                                                                              | Measuring Range                                      | Meas.<br>Category                 | Max.<br>Wire Dia. | Transformation<br>Factor            | Frequency<br>Range        | Intrinsic Uncertainty<br>±(% rdg. +) | Article<br>Number                | AM<br>BASE | AM<br>TECH<br>PRO<br>XTR<br>Outi |
| DC/AC Cui          | rrent Sensors with Voltage Out                                                           | put                                                  | 1                                 |                   |                                     |                           |                                      |                                  |            |                                  |
| CP30               | DC/AC clip-on current sensor, with battery mode (30 h)                                   | 5 mA to 30 A<br>(DC / AC pk)                         | 300 V /<br>CAT III                | 25 mm             | 100 mV/A                            | DC20 kHz<br>(-3 dB)       | 1 % +2 mA                            | Z201B                            | •          |                                  |
| CP330              | DC/AC clip-on current sensor,<br>with 2 measuring ranges,<br>battery mode (50 h)         | Range: 0.5 30 A<br>Range: 5 300 A<br>(DC / AC rms)   | 300 V /<br>CAT III                | 25 mm             | 10 mV/A;<br>1 mV/A                  | DC20 kHz<br>(-3 dB)       | 1 % + 50 mA<br>1 % + 100 mA          | Z202B                            | •          |                                  |
| CP1100             | DC/AC clip-on current sensor,<br>with 2 measuring ranges,<br>battery mode (50 h)         | Range: 0.5 100 A<br>Range: 5 1000 A<br>(DC / AC rms) | 300 V /<br>CAT III                | 32 mm             | 10 mV/A;<br>1 mV/A                  | DC20 kHz<br>(-1 dB)       | 1 % + 100 mA<br>1 % + 500 mA         | Z203B                            | •          |                                  |
| CP1800             | DC/AC current clamp sensor,<br>with 2 measuring ranges,<br>battery mode (50 h)           | Range: 0.5 125 A<br>Range: 5 1250 A<br>(DC / AC rms) | 300 V /<br>CAT III                | 32 mm             | 10 mV/A,<br>1 mV/A                  | DC 20 kHz<br>(-1 dB)      | 1% + 100 mA<br>1% + 500 mA           | Z204A                            | •          |                                  |
| AC Curren          | t Sensors with Voltage Output                                                            |                                                      |                                   |                   |                                     |                           |                                      |                                  |            |                                  |
| WZ12B              | AC clip-on current sensor                                                                | 10 mA~ 100 A~                                        | 300 V /<br>CAT III                | 15 mm             | 100 mV/A                            | <u>45 65</u><br>500 Hz    | 1.5% +0.1 mA                         | Z219B                            | •          |                                  |
| WZ12C              | AC clip-on current sensor,<br>with 2 measuring ranges                                    | 1 mA~ 15 A~,<br>1 150 A~                             | 300 V /<br>CAT III                | 15 mm             | 1 mV/mA,<br>1 mV/A                  | <u>45 65</u><br>400 Hz    | 3% + 0.15 mA,<br>2% + 0.1 A          | Z219C                            | •          |                                  |
| WZ11B              | AC clip-on current sensor,<br>with 2 measuring ranges                                    | 0.5 20 A~,<br>5 200 A~                               | 600 V /<br>CAT III                | 20 mm             | 100 mV/A,<br>10 mV/A                | 30 <u>48 65</u><br>500 Hz | 1 3%                                 | Z208B                            | •          |                                  |
| Z3512A             | AC clip-on current sensor, with 4 measuring ranges                                       | 1 mA 1/10/100/<br>1000 A~                            | 600 V /<br>CAT III                | 52 mm             | 1 V/A, 100 mV/A,<br>10 mV/A, 1 mV/A | 10 <u>48 65</u><br>3 kHz  | 0.5 3%,<br>0.2 1%                    | Z225A                            | •          |                                  |
| METRA-<br>FLEX3000 | Flexible AC current sensor<br>with 3 measuring ranges,<br>battery mode (2000 h)          | 0,5 30 A,<br>0,5 300 A,<br>5 3000 A                  | 1000 V<br>CAT III<br>600 V CAT IV | 176 mm            | 100 mV/A,<br>10 mV/A,<br>1 mV/A     | 10 Hz 20 kHz              | 1% + 0.1 A<br>1% + 0.1 A<br>1% + 1 A | Z207E                            | •          |                                  |
| METRA-<br>FLEX300M | Flexible AC miniature current<br>sensor with 3 measuring<br>ranges, battery mode (150 h) | 1 3 A,<br>1 30 A,<br>5 300 A                         | 1000 V<br>CAT III<br>600 V CAT IV | 50 mm             | 1 V/A,<br>100 mV/A,<br>10 mV/A      | 20 Hz 100 kHz             | 1% + 0.2 A<br>1% + 0.2 A<br>1% + 1 A | Z207M                            | •          |                                  |
| AC Curren          | t Transformer with Current Out                                                           | tput                                                 | 1                                 | 1                 |                                     | 1                         |                                      | 1                                |            |                                  |
| WZ12A              | AC clip-on current transformer                                                           | 15 180 A~                                            | 300 V /<br>CAT III                | 15 mm             | 1 mA/A                              | <u>45 65</u><br>400 Hz    | 3%                                   | Z219A                            | _          |                                  |
| WZ12D              | AC clip-on current transformer                                                           | 30 mA 150 A~ <sup>1)</sup>                           | 300 V /<br>CAT III                | 15 mm             | 1 mA/A                              | <u>45 65</u><br>500 Hz    | 2.5% +0.1 mA                         | Z219D                            | -          |                                  |
| WZ11A              | AC clip-on current transformer                                                           | 1 200 A~                                             | 600 V /<br>CAT III                | 20 mm             | 1 mA/A                              | <u>48 65</u><br>400 Hz    | 1 3%                                 | Z208A                            | —          |                                  |
| Z3511              | AC clip-on current transformer                                                           | 4 500 A~                                             | 600 V /<br>CAT III                | 30 x 63<br>mm     | 1 mA/A                              | <u>48 65</u><br>1 kHz     | 3% +0.4 A                            | GTZ3511<br>000R0001              | —          |                                  |
| Z3512              | AC clip-on current transformer                                                           | 0.5 1000 A~                                          | 600 V /<br>CAT III                | 52 mm             | 1 mA/A                              | 30 <u>48 65</u><br>5 kHz  | 0.5% 0.7%                            | GTZ3512<br>000R0001              | _          |                                  |
|                    | istors for Multimeters without                                                           | 0                                                    |                                   |                   |                                     |                           |                                      |                                  |            |                                  |
| NW3A               | Plug-in shunt resistor, encapsulated 0,1 $\Omega$                                        | 0 3 A                                                | 300 V /<br>CAT III                |                   | 100 mV/A                            | DC10 kHz                  | 0.5%                                 | Z205B                            | •          |                                  |

ullet with adjustable transformation factor 1: 1 / 10 / 100 / 1000

<sup>1)</sup> Measuring range with METRAHIT AM PRO as from 100 mA

Edited in Germany • Subject to change without notice • PDF version available on the Internet



GMC-I Messtechnik GmbH Südwestpark 15 90449 Nürnberg • Germany Phone +49 911 8602-111 Fax +49 911 8602-777 E-Mail info@gossenmetrawatt.com www.gossenmetrawatt.com

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital Multimeters category:

Click to view products by Gossen Metrawatt manufacturer:

Other Similar products are found below :

6111-517 FS881 40705X C.A 6133 LAUNCH KIT P 1020 A P 3340 SEFRAM7303 BS K-CLIP 19290 IBT6K 1000-219 1001-613 1006-969 1008-221 1012-597 1013-099 30XR 34XR 35XP TESTO 745 0590 7450 TESTO 760-2 0590 7602 TESTO 760-3 0590 7603 440012 AX-155 AX-174 AX-178 AX-18B AX-190A AX-503 AX-507B AX-594 AX-LCR42A AX-MS811 AX-MS8250 AX-PDM01 AX-T520 AX-T901 AX-T903 BAT-250-EUR BM525S BM805S BM807S BM817S BM827S BM829S BM857S BM859S BM867S BM907S 33XR