METRALINE DM 61/62
 Analog-Digital Multimeter

- Voltage: DC / AC $100 \mu \mathrm{~V}$... 1000 V
- Current: DC / AC: $10 \mu A$... 660.0 mA (DM 61) / 10.00A (DM 62)
- Clip function 1000:1 for current transformers (DM 61 only)
- Resistance: $100 \mathrm{~m} \Omega$... $60.00 \mathrm{M} \Omega$
- Capacitance: 1 pF ... 40.00 mF (DM 62 only)
- Frequency: 10.00 Hz ... 10.00 MHz (DM 62 only)
- Diode / Continuity
- Duty cycle (\%) measurement (DM 62 only)
- Temperature TC with K-type: $-50 \ldots 1300^{\circ} \mathrm{C}$
- TRMS bandwidth: 2 kHz (DM 62 only)
- Hold / Peak / Min-Max / Relative (Zero)
- Auto / Manual ranging
- Dual digital display with analog scale and backlight
- ABS Automatic Blocking Sockets
- UL Certification
- 3 year warranty

Features

Automatic Blocking Sockets (ABS) *

Automatic blocking sockets prevent incorrect connection of measurement cables and inadvertent selection of the wrong measured quantity. This significantly reduces danger to the user, the instrument and the system under test, and eliminates it entirely in many cases.

Automatic / Manual Measuring Range Selection

Measured quantities are selected with the rotary switch. The measuring range is automatically matched to measured values. The measuring range can be selected manually as well with the help of the AUTO/MAN key.

Display of Negative Values at the Analog Scale

Negative values are also displayed at the analog scale for zerofrequency quantities, allowing for observation of measured quantity fluctuation around the zero-point.

Storage of Measured Values

By pressing the HOLD/MIN/MAX key, the currently displayed measurement value can be "frozen" in the display.
The minimum and maximum values which were present at the input of the measuring instrument after activation of the MIN/MAX mode can be selectively "retained" with the MIN/ MAX function. The most important application is the determination of the minimum or maximum value during long-term observation of measurement quantities. MIN/MAX has no effect on the analog display; it continues to display the current measurement value.

Continuity Test

Allows for the detection of short-circuits and interrupted conductors. In addition to displaying test results, an acoustic signal can also be generated if desired.

Power Saving Circuit

The device is switched off automatically if the measured value remains unchanged for a period of approximately 15 minutes, and if none of the controls are activated during this time. Automatic shutdown can be deactivated.

Protective Cover for Harsh Conditions

The instrument is protected against damage in the event of impacts or dropping by means of a soft rubber cover with tilt stand. The rubber material also assures that the instrument does not wander if it is set up on a vibrating surface.

Duty Cycle Measurement - Square-Wave Signals

This function makes it possible to test circuits and transmission cables by measuring the frequency and the duty cycle of pulses.

Voluntary Manufacturer's Warranty

36 months for material and workmanship

[^0]
Analog-Digital Multimeter

Characteristic Values

Meas. Function	Measuring Range	DM61	$\begin{aligned} & \text { DM62 } \\ & \text { (TRMS) } \end{aligned}$	Resolution	Input Impedance	Digital display Inherent deviation at reference condition $+(. . . \%$ rdg + ...digits)	Overload capacity ${ }^{1)}$	
							Overload values	Overload duration
$V(D C)$	660.0 mV	\bullet	-	$100 \mu \mathrm{~V}$	$\begin{aligned} & >100 \mathrm{M} \Omega / / \\ & <40 \mathrm{pF} \end{aligned}$	$0.7+5$	1000 V DC AC eff/rms Sine wave	Cont.
	6.600 V	\bullet	-	1 mV	$11 \mathrm{M} \Omega / /<40 \mathrm{pF}$	$0.4+5$		
	66.00 V	\bullet	\bullet	10 mV	$10 \mathrm{M} \Omega / /<40 \mathrm{pF}$	$0.4+5$		
	660.0 V	\bullet	-	100 mV	$10 \mathrm{M} \Omega / /<40 \mathrm{pF}$	$0.4+5$		
	1000 V	-	-	1 V	$10 \mathrm{M} \Omega / /<40 \mathrm{pF}$	$0.4+5$		
V (AC)	660.0 mV	\bullet	-	$100 \mu \mathrm{~V}$	$\begin{aligned} & >100 \mathrm{M} \Omega / / \\ & <40 \mathrm{pF} \end{aligned}$	$1.2+5$		
	6.600 V	\bullet	-	1 mV	$11 \mathrm{M} \Omega / /<40 \mathrm{pF}$	$1.0+3$		
	66.00 V	-	-	10 mV	$10 \mathrm{M} \Omega / /<40 \mathrm{pF}$			
	660.0 V	-	-	100 mV	$10 \mathrm{M} \Omega / /<40 \mathrm{pF}$			
	1000 V	-	-	1 V	$10 \mathrm{M} \Omega / /$ <40pF			
A(DC)					Voltage Drop			
	66.00 mA	\bullet	\bullet	$10 \mu \mathrm{~A}$	66.00 mV	$0.8+5$	0.7 A	Cont.
	660.0 mA	-	\bullet	$100 \mu \mathrm{~A}$	66.00 mV	$0.8+5$		
	$10.00 \mathrm{~A}^{6}$	-	-	10 mA	10.00 mV	$1.5+5$	-	-
A(AC)	66.00 mA	-	-	$10 \mu \mathrm{~A}$	66.00 mV	$0.8+5$	0.7 A	Cont.
	660.0 mA	-	-	$100 \mu \mathrm{~A}$	66.00 mV	$0.8+5$		
	$10.00 \mathrm{~A}^{6}$	-	-	10 mA	10.00 mV	$1.5+5$	-	-
$\underset{\left.(\mathrm{AC})^{5}\right)}{>C}$	66.00 A	\bullet	-	10 mA	66.00 mV	$0.8+5$	0.7 A	Cont.
	660.0 A	-	-	100 mA	66.00 mV	$0.8+5$		
Ω					No load Voltage			
	660.0 ת	-	\bullet	$100 \mathrm{~m} \Omega$	-3.3 V	$0.8+5$	$\begin{gathered} 1000 \mathrm{~V} \\ \mathrm{DC} \\ \text { AC } \\ \text { eff/rms } \\ \text { Sine } \\ \text { wave } \end{gathered}$	$\begin{aligned} & \max . \\ & 10 \mathrm{~s} \end{aligned}$
	$6.600 \mathrm{k} \Omega$	-	-	1Ω	$-1.08 \mathrm{~V}$	$0.8+5$		
	$66.00 \mathrm{k} \Omega$	-	-	10Ω	-1.08 V	$0.8+5$		
	$660.0 \mathrm{k} \Omega$	-	-	100Ω	-1.08 V	$0.8+5$		
	$6.600 \mathrm{M} \Omega$	-	-	$1 \mathrm{k} \Omega$	-1.08 V	$1.0+5$		
	$66.00 \mathrm{M} \Omega$	\bullet	\bullet	$10 \mathrm{k} \Omega$	-1.08 V	$2.0+5$		
-1)	660.0Ω	-	-	$100 \mathrm{~m} \Omega$	-3.3 V	$0.8+5$	1000 V DC AC eff/rms Sine wave	$\begin{aligned} & \max . \\ & 10 \mathrm{~s} \end{aligned}$
DIODE	2.000 V	-	-	1 mV	3.3 V	$2.0+10$		
F	6.600 nF	-	-	1 pF	-	$3.0+40$		
	66.00 nF	-	-	10 pF		$2.0+10$		
	660.0 nF	-	\bullet	100 pF		$2.0+10$		
	$6.600 \mu \mathrm{~F}$	-	\bullet	1 nF		$2.0+10$		
	$66.00 \mu \mathrm{~F}$	-	-	10 nF		$2.0+10$		
	660.0 HF	-	-	100 nF		$5.0+10$		
	6.600 mF	-	-	$1 \mu \mathrm{~F}$		$5.0+10$		
	40.00 mF	-	-	$10 \mu \mathrm{~F}$		$5.0+10$		
Hz					f min			
	66.00 Hz	-	-	0.01 Hz	10 Hz	$0.2+2^{2)}$		
	660.0 Hz	-	-	0.1 Hz				
	6.600 kHz	-	-	1 Hz				
	66.00 kHz	-	-	10 Hz				
	660.0 kHz	-	-	100 Hz				
	6.600 MHz	-	-	1 kHz				
	10.00 MHz	-	\bullet	10 kHz				
\%	1.0 ... 98.90\%	-	-	0.01 \%	0.9\% (\% min)	$\begin{aligned} & 10 \mathrm{~Hz} . . .1 \mathrm{kHz} \\ & \pm 5 \text { Digit } \\ & 1 \ldots .10 \mathrm{kHz} ; \\ & \pm 5 \text { Digit/kHz } \end{aligned}$		
${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	$0 \ldots 1300{ }^{\circ} \mathrm{C}$	-	\bullet	$1^{\circ} \mathrm{C}$	-	$2.0+3^{4)}$		
	$-50 \ldots 0^{\circ} \mathrm{C}$	-	-	$1^{\circ} \mathrm{C}$	-	$2.0 \pm 10^{4)}$		

1) At $0^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}$
2) At input > 3.5 Vrms, typical $5 \mathrm{Vp}-\mathrm{p}$, square wave, bipolar inputs
3) For $<10 \mathrm{kHz}$ at $5 \mathrm{Vp}-\mathrm{p}$, square wave, bipolar inputs
4) Without sensor
5) Display with current transformers 1000:1
6) Limited by 10 A fuse

Influencing Quantities and Influence Error

Influencing Quantity	Range of Influence	Measured Quantity/ Measuring Range	$\begin{gathered} \text { Influence Error }{ }^{1} \text {) } \\ \pm(\ldots \% \text { of rdg. }+\ldots \text { digits }) \\ \hline \end{gathered}$
Temperature	$\begin{gathered} 0^{\circ} \mathrm{C} \ldots+21^{\circ} \mathrm{C} \\ \text { and } \\ +25^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C} \end{gathered}$	V DC, V AC	1 x Intrinsic uncertainty/K
		A DC, A AC	
		Ω	
		Diode	
		F, Hz, \%, ${ }^{\circ} \mathrm{C}$	
Measured Quantity Frequency	$20 \mathrm{~Hz} \ldots<50 \mathrm{~Hz}$	660 mV~	$1.0+3$
	$>50 \mathrm{~Hz} \ldots 200 \mathrm{~Hz}$		$5.0+3$
	$20 \mathrm{~Hz} \ldots<50 \mathrm{~Hz}$	6.6 ... $1000 \mathrm{~V} \sim$	$1.0+3$
	$>50 \mathrm{~Hz}$... 2 kHz		$5.0+7$
	$>50 \mathrm{~Hz} \ldots 200 \mathrm{~Hz}$	A~	$1.0+3$
	$20 \mathrm{~Hz} \ldots<2 \mathrm{kHz}$		$5.0+3$
	Crest $1 \ldots 1.4$	$\mathrm{V} \sim^{3}$) $\mathrm{A} \sim^{3)}$	$\pm 1 \%$ of rdg
	Factor CF $1.4 \ldots{ }^{\text {.. }}{ }^{2)}$		$\pm 5 \%$ of rdg
Battery Voltage	$\begin{gathered} \mathbf{S}^{4)} \ldots<2.49 \\ \mathrm{~V} \\ >2.49 \mathrm{~V} \ldots 3 \mathrm{~V} \end{gathered}$	V DC	5 Digit
		$V_{\sim}, ~ A D C$	10 Digit
		A AC	6 Digit
		660Ω	4 Digit
		$\begin{gathered} 6.600 \mathrm{k} \Omega \ldots \\ 66.00 \mathrm{M} \Omega \end{gathered}$	3 Digit
		nF, F, mF, Hz, \%	5 Digit
Relative Humidity	75% 3 days Meter off	$\begin{gathered} \text { V~, V DC } \\ \text { A~, ADC } \\ \Omega \\ F \\ H \\ { }^{\circ} \mathrm{C} \\ \% \\ { }^{\circ} \end{gathered}$	1 x intrinsic uncertainty

1) With temperature: Error data apply per 10 K change in temperature. With frequency: Error data apply to a display from 300 digits onwards.
2) With unknown waveform (crest factor $C F>2$), measure with manual range selection
3) With the exception of sinusoidal waveform.
${ }^{4)}$ After the "t" symbol is displayed.

Influencing Quantity	Range of Influence	Measuring Range	Attenuation
Common Mode Interference Voltage	Noise quantity max. $1000 \mathrm{~V}=-$	$\mathrm{V}=-$	$>100 \mathrm{~dB}$
	Noise quantity max. $1000 \mathrm{~V} \sim$ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ sinusoidal	$\mathrm{V} \sim$	$>100 \mathrm{~dB}$
	Noise quantity: $\mathrm{V} \sim$, value of the measuring range at a time max. 1000 V $\sim, 50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ sinusoidal	$660 \mathrm{mV}, 6.6 \mathrm{~V}$, $660 \mathrm{~V}, 1000 \mathrm{~V}$ DC	$>43 \mathrm{~dB}$
	Noise quantity max. $1000 \mathrm{~V}-$	66 V DC	$>35 \mathrm{~dB}$
	V \sim	$>45 \mathrm{~dB}$	

Display

Liquid crystal display ($58 \mathrm{~mm} \times 31.4 \mathrm{~mm}$) with analog indication and digital display and with display of the unit of measured quantity, function and various special functions.

Analog

Indication	LCD scale with bar graph
Scale length	55 mm
Scaling	65 scale divisions during all the
Polarity indication	measurement
With automatic reversal	
Overrange indication	By triangle
Sampling rate	28 times $/ \mathrm{s}$

Digital

Height of Main
Display numerals
Height of Sub
Display numerals
Number of counts
Overrange display
Polarity display
Sampling rate
Power supply
Battery 2 AA size batteries alkaline manganese cells as per IEC LR6.
Service life

Battery test

7 segment numerals: 12 mm
7 segment numerals: 7 mm
4 digit: 6600 steps
"OL" is shown
„"" sign is shown, When positive pole connected to "म"
2.8 times/s

Emission
EN 61326: 2013 Class B

Immunity
IEC 61000-4-2:
8 kV atmosphere discharge
4 kV contact discharge
IEC 61000-4-3: $3 \mathrm{~V} / \mathrm{m}$
Short-term measured value deviation may occur during electromagnetic interference thus reducing the specified operating quality.

Safety:
Measuring category
IEC 61010-1-2010
600 V CAT III, 300 V CAT IV
The maximum voltage of 1000 V may only be used with CAT II.
High Voltage Test $\quad 6.7$ kV (IEC 61010-1-2010)

Fuses

Fuse for up to 660 mA ranges

FF (UR) $1.6 \mathrm{~A} / 1000 \mathrm{~V}$ AC/DC; $6.3 \mathrm{~mm} \times 32 \mathrm{~mm}$; rating 10 kA with 1000 VAC/DC and ohmic load; in conjunction with power diodes, protects all current measuring ranges up to 660 mA .

Fuse for up to 10 A ranges (METRALINE DM 62)

FF (UR) $10 \mathrm{~A} / 1000 \mathrm{~V}$ AC/DC; $10 \mathrm{~mm} \times 38 \mathrm{~mm}$; rating 30 kA with 1000 VAC/DC and ohmic load; protects the 10 A ranges up to 1000 V AC/DC.

Defective fuses are not displayed.

Response Time (after manual range selection)

| $\begin{array}{c}\text { Measured Quantity/ } \\ \text { Measuring Range }\end{array}$ | $\begin{array}{c}\text { Response Time } \\ \text { Analog } \\ \text { Display }\end{array}$ | | Digital Display |
| :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Transient response for

step function of the

measured quantity\end{array}\right)\)

Reference conditions

Ambient temperature $23^{\circ} \mathrm{C}+2 \mathrm{~K}$
Relative humidity $45 \% \ldots 55 \% \mathrm{RH}$
Frequency of
measured quantity
Waveform of the
measured quantity sinusoidal
Battery voltage $\quad 3 \mathrm{~V} \pm 0.1 \mathrm{~V}$

Environmental conditions

Functional
temperature range $\quad 0^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
Storage
temperature range $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ (without batteries)
Relative humidity 45 ... 75 \%
Altitude up to 2000 m

Mechanical configuration

Protection
for the meter IP50
Pollution degree 2
Connection sockets IP20 according to
EN 60529 / DIN VDE 0470-1
Dimensions with holster: $86 \mathrm{~mm} \times 188 \mathrm{~mm} \times 53 \mathrm{~mm}$ without holster: $79 \mathrm{~mm} \times 174 \mathrm{~mm} \times 38 \mathrm{~mm}$
Weight $\quad 480 \mathrm{~g}$ approx., including battery and holster

Applicable Regulations and Standards

IEC 61010-1/EN 61010-1/	Safety requirements for electrical equipment for				
VDE 0411-1	measurement, control and laboratory use	$	$	EN 60529	Test instruments and test procedures
:---	:---				
VDE 0470, Part 1	Electrical equipment for measurement, control and labo- ratory use - EMC requirements - Part 2-1: Particular requirements for sensitive test and measurement equipment				
DIN EN 61326-2-1	VDE 0843-02-2-1				
Test Instruments and test procedures					
DIN EN 60529	- Degree of protection provided by enclosures (IP code)				

METRALINE DM 61/62

Analog-Digital Multimeter

Standard Equipment

1 Multimeter
1 Rubber holster with carrying strap
1 Cable set
1 Battery set
1 Operating instructions
1 Test report

Order Information

Description	Type	Article Number
Clipping multimeter, clip factor 1:1000 for current measurement with optional clamp WZ1001 as accessory	METRALINE DM 61	M194A
TRMS Multimeter	METRALINE DM 62	M197A
Accessories	WZ1001	Z194A
AC clamp 1000:1		

For additional information on accessories, please refer to

- our „Measuring Instruments and Testers" catalogue
- our website www.gossenmetrawatt.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Digital Multimeters category:
Click to view products by Gossen Metrawatt manufacturer:
Other Similar products are found below :
6111-517 FS881 40705X C.A 6133 LAUNCH KIT P 1020 A SEFRAM7303 BS K-CLIP 19290 DM285-FLEX-KIT IBT6K 1000-219
1001-613 1006-969 1008-221 1012-597 1013-099 30XR 34XR 35XP TESTO 74505907450 TESTO 760-2 0590 7602 TESTO 760-3
$\underline{05907603} 440012$ AX-155 AX-174 AX-178 AX-18B AX-190A AX-503 AX-507B AX-594 AX-LCR42A AX-MS811 AX-MS8250 AX-
PDM01 AX-T520 AX-T901 AX-T903 BAT-250-EUR BM525S BM805S BM807S BM817S BM827S BM829S BM857S BM859S
BM867S BM907S 33XR

[^0]: * Patented (patent no. EP 1801 598, US 7,439,725)

