260-Pin BGA
Com \& Ind Temp HSTL I/O

144Mb SigmaQuad-IIIe ${ }^{\text {TM }}$ Burst of 2 ECCRAM ${ }^{\text {™ }}$

Up to 800 MHz
$1.25 \mathrm{~V} \sim 1.3 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$
$1.2 \mathrm{~V} \sim 1.3 \mathrm{~V} \mathrm{~V}_{\mathrm{DDQ}}$

Features

- $4 \mathrm{Mb} \times 36$ and $8 \mathrm{Mb} \times 18$ organizations available
- 800 MHz maximum operating frequency
- 1.6 BT/s peak transaction rate (in billions per second)
- $115 \mathrm{~Gb} / \mathrm{s}$ peak data bandwidth (in x36 devices)
- Separate I/O DDR Data Buses
- Non-multiplexed DDR Address Bus
- Two operations - Read and Write - per clock cycle
- Burst of 2 Read and Write operations
- 3 cycle Read Latency
- On-chip ECC with virtually zero SER
- $1.25 \mathrm{~V} \sim 1.3 \mathrm{~V}$ core voltage
- $1.2 \mathrm{~V} \sim 1.3 \mathrm{~V}$ HSTL I/O interface
- Configurable ODT (on-die termination)
- ZQ pin for programmable driver impedance
- ZT pin for programmable ODT impedance
- IEEE 1149.1 JTAG-compliant Boundary Scan
- 260-pin, 14 mm x $22 \mathrm{~mm}, 1 \mathrm{~mm}$ ball pitch, 6/6 RoHScompliant BGA package

SigmaQuad-IIIe ${ }^{\text {TM }}$ Family Overview

SigmaQuad-IIIe ECCRAMs are the Separate I/O half of the SigmaQuad-IIIe/SigmaDDR-IIIe family of high performance ECCRAMs. Although very similar to GSI's second generation of networking SRAMs (the SigmaQuad-II/SigmaDDR-II family), these third generation devices offer several new features that help enable significantly higher performance.

Clocking and Addressing Schemes

The GS81313LQ18/36GK SigmaQuad-IIIe ECCRAMs are synchronous devices. They employ three pairs of positive and negative input clocks; one pair of master clocks, CK and $\overline{\mathrm{CK}}$, and two pairs of write data clocks, $\mathrm{KD}[1: 0]$ and $\overline{\mathrm{KD}}[1: 0]$. All six input clocks are single-ended; that is, each is received by a dedicated input buffer.

CK and $\overline{\mathrm{CK}}$ are used to latch address and control inputs, and to control all output timing. $\mathrm{KD}[1: 0]$ and $\overline{\mathrm{KD}}[1: 0]$ are used solely to latch data inputs.

Each internal read and write operation in a SigmaQuad-IIIe B2 ECCRAM is two times wider than the device I/O bus. An input data bus de-multiplexer is used to accumulate incoming data before it is simultaneously written to the memory array. An output data multiplexer is used to capture the data produced from a single memory array read and then route it to the appropriate output drivers as needed. Therefore, the address field of a SigmaQuad-IIIe B2 ECCRAM is always one address pin less than the advertised index depth (e.g. the $8 \mathrm{M} \times 18$ has 4M addressable index).

On-Chip Error Correction Code

GSI's ECCRAMs implement an ECC algorithm that detects and corrects all single-bit memory errors, including those induced by SER events such as cosmic rays, alpha particles, etc. The resulting Soft Error Rate of these devices is anticipated to be <0.002 FITs/Mb - a 5-order-of-magnitude improvement over comparable SRAMs with no on-chip ECC, which typically have an SER of 200 FITs/Mb or more.

All quoted SER values are at sea level in New York City.

Parameter Synopsis

Speed Grade	Max Operating Frequency	Read Latency	V $_{\text {DD }}$
-800	800 MHz	3 cycles	1.2 V to 1.35 V
-714	714 MHz	3 cycles	1.2 V to 1.35 V
-600	600 MHz	3 cycles	1.2 V to 1.35 V

8M x 18 Pinout (Top View)

	1	2	3	4	5	6	7	8	9	10	11	12	13
A	$V_{D D}$	$V_{\text {DDQ }}$	$V_{\text {DD }}$	$V_{\text {DDQ }}$	$\begin{gathered} \text { NC } \\ \text { (RSVD) } \end{gathered}$	$\begin{aligned} & \text { MCH } \\ & \text { (CFG) } \end{aligned}$	MCL	ZQ	PZT1	$V_{\text {DDQ }}$	$V_{\text {DD }}$	$V_{\text {DDQ }}$	$V_{\text {DD }}$
B	$\mathrm{V}_{\text {SS }}$	NU_{0}	$\mathrm{V}_{\text {SS }}$	Nu_{1}	MCL	$\begin{gathered} \text { MCL } \\ (84 M) \end{gathered}$	$\underset{(\mathrm{RSCD})}{\mathrm{NC}}$	$\begin{aligned} & \text { MCH } \\ & \text { (SIOM) } \end{aligned}$	PZTO	D0	$\mathrm{V}_{\text {SS }}$	Q0	$V_{S S}$
C	Q17	$V_{\text {DDQ }}$	D17	$\mathrm{V}_{\mathrm{DDQ}}$	$\mathrm{V}_{\text {SS }}$	SA	$V_{D D}$	SA	$\mathrm{V}_{\text {SS }}$	$V_{\text {DDQ }}$	NU ,	$V_{\text {DDQ }}$	NU
D	$\mathrm{V}_{\text {SS }}$	NU_{0}	$\mathrm{V}_{\text {SS }}$	NU I	SA	$V_{\text {DDQ }}$	$\begin{gathered} \text { NC } \\ (288 \text { Mb) } \end{gathered}$	$V_{\text {DDQ }}$	SA	D1	$\mathrm{V}_{\text {SS }}$	Q1	$\mathrm{V}_{\text {SS }}$
E	Q16	$V_{\text {DDQ }}$	D16	$V_{D D}$	$\mathrm{V}_{\text {SS }}$	SA	$\mathrm{V}_{\text {SS }}$	SA	$\mathrm{V}_{\text {SS }}$	$V_{\text {DD }}$	NU_{1}	$V_{\text {DDQ }}$	NU
F	$V_{S S}$	NU	$\mathrm{V}_{\text {S }}$	NU	SA	$V_{D D}$	$V_{\text {DDQ }}$	$V_{\text {DD }}$	SA	D2	$\mathrm{V}_{\text {SS }}$	Q2	$\mathrm{v}_{\text {SS }}$
G	Q15	NU_{0}	D15	NU_{1}	$V_{S S}$	SA	MZT1	SA	$\mathrm{V}_{\text {SS }}$	D3	NU	Q3	NU
H	Q14	$V_{\text {DDQ }}$	D14	$V_{\text {DDQ }}$	SA	$V_{\text {DDQ }}$	$\overline{\text { w }}$	$V_{\text {DDQ }}$	SA	$V_{\text {DDQ }}$	NU_{1}	$V_{\text {DDQ }}$	NU_{0}
J	$\mathrm{V}_{\text {SS }}$	NU_{0}	$V_{\text {SS }}$	NU_{1}	$\mathrm{V}_{\text {SS }}$	SA	$\mathrm{V}_{\text {SS }}$	SA	$\mathrm{V}_{\text {SS }}$	D4	$\mathrm{V}_{\text {SS }}$	Q4	$\mathrm{V}_{\text {SS }}$
K	CQ1	$V_{\text {DDQ }}$	$\mathrm{V}_{\text {REF }}$	$V_{\text {DD }}$	KD1	$V_{D D}$	CK	$V_{\text {DD }}$	KDO	$V_{\text {DD }}$	$\mathrm{V}_{\text {REF }}$	$V_{\text {DDQ }}$	CQ0
L	$\overline{\mathrm{CQ1}}$	$\mathrm{V}_{\text {SS }}$	QVLD1	$\mathrm{V}_{\text {ss }}$	$\overline{\mathrm{KD} 1}$	$V_{\text {DDQ }}$	$\overline{\mathrm{CK}}$	$V_{\text {DDQ }}$	$\overline{\mathrm{KD}} 0$	$V_{S S}$	QVLD0	$\mathrm{V}_{\text {SS }}$	$\overline{\mathrm{CQ}}$
M	$\mathrm{V}_{\text {SS }}$	Q13	$\mathrm{V}_{\text {SS }}$	D13	$\mathrm{V}_{\text {SS }}$	SA	$\mathrm{V}_{\text {SS }}$	SA	$\mathrm{V}_{\text {SS }}$	NU ,	$\mathrm{V}_{\text {SS }}$	NU_{0}	$V_{S S}$
N	NU_{0}	$V_{\text {DDQ }}$	NU I	$V_{\text {DDQ }}$	PLL	$V_{\text {DDQ }}$	$\overline{\mathrm{R}}$	$V_{\text {DDQ }}$	MCH	$V_{\text {DDQ }}$	D5	$V_{\text {DDQ }}$	Q5
P	NU_{0}	Q12	NU_{1}	D12	$\mathrm{V}_{\text {SS }}$	SA	MZTO	SA	$\mathrm{V}_{\text {SS }}$	NU	D6	NU_{0}	Q6
R	$\mathrm{V}_{\text {SS }}$	Q11	$\mathrm{V}_{\text {SS }}$	D11	MCH	V_{DD}	$\mathrm{V}_{\text {DDQ }}$	$V_{\text {DD }}$	RST	NU ,	$\mathrm{V}_{\text {SS }}$	NU_{0}	$\mathrm{V}_{\text {SS }}$
T	NU_{0}	$V_{\text {DDQ }}$	NU ,	$V_{\text {DD }}$	$\mathrm{V}_{\text {SS }}$	SA	$\mathrm{V}_{S S}$	SA	$\mathrm{V}_{\text {SS }}$	$V_{D D}$	D7	$V_{\text {DDQ }}$	Q7
U	$\mathrm{V}_{S S}$	Q10	$\mathrm{V}_{S S}$	D10	$\underset{(576 \mathrm{Mb})}{\mathrm{NC}}$	$V_{\text {DDQ }}$	$\underset{\substack{\text { NC } \\ \text { (RSVD) }}}{ }$	$V_{\text {DDQ }}$	$\begin{gathered} \text { NC } \\ \text { (1152 Mb) } \end{gathered}$	NU ,	$\mathrm{V}_{\text {SS }}$	NU_{0}	$\mathrm{V}_{\text {SS }}$
V	NU_{0}	VDDQ	NU I	$V_{\text {DDQ }}$	$V_{S S}$	$\underset{(x \times 8)}{(x)}$	$V_{\text {D }}$	$\begin{gathered} \text { SA } \\ (B 2) \end{gathered}$	$\mathrm{V}_{\text {SS }}$	$V_{\text {DDQ }}$	D8	$V_{\text {DDQ }}$	Q8
W	$\mathrm{V}_{\text {SS }}$	Q9	$\mathrm{V}_{\text {SS }}$	D9	TCK	MCL	RCS	MCL	TMS	NU ,	$\mathrm{V}_{\text {SS }}$	NU_{0}	$\mathrm{V}_{\text {SS }}$
Y	$V_{D D}$	$V_{\text {DDQ }}$	$V_{\text {DD }}$	$\mathrm{V}_{\mathrm{DDQ}}$	TDO	ZT	$\begin{array}{\|c\|} \hline \text { NC } \\ \text { (RSVD) } \\ \hline \end{array}$	MCL	TDI	$V_{\text {DDQ }}$	$V_{D D}$	$V_{\text {DDQ }}$	$V_{\text {DD }}$

Notes:

1. Pins $5 \mathrm{~B}, 6 \mathrm{~W}, 7 \mathrm{~A}, 8 \mathrm{~W}$, and 8 Y must be tied Low in this device.
2. Pins $5 R$ and 9 N must be tied High in this device.
3. Pin 6 A is defined as mode pin CFG in the pinout standard. It must be tied High in this device to select x18 configuration.
4. Pin 8 B is defined as mode pin SIOM in the pinout standard. It must be tied High in this device to select Separate I/O configuration.
5. Pin 6 B is defined as mode pin B 4 M in the pinout standard. It must be tied Low in this device to select Burst-of-2 configuration.
6. Pin 6 V is defined as address pin SA for x 18 devices. It is used in this device.
7. Pin 8 V is defined as address pin SA for B 2 devices. It is used in this device.
8. Pin 7D is reserved as address pin SA for 288 Mb devices. It is a true no connect in this device.
9. Pin 5 U is reserved as address pin SA for 576 Mb devices. It is a true no connect in this device.
10. Pin 9 U is reserved as address pin SA for 1152 Mb devices. It is a true no connect in this device.

4M x 36 Pinout (Top View)

	1	2	3	4	5	6	7	8	9	10	11	12	13
A	$V_{\text {DD }}$	$V_{\text {DDQ }}$	$V_{\text {D }}$	$V_{\text {DDQ }}$	$\begin{gathered} \mathrm{NC} \\ (\text { RSVD }) \end{gathered}$	$\underset{\substack{\mathrm{MCLL} \\(\mathrm{CFG})}}{(2)}$	MCL	ZQ	PZT1	$V_{\text {DDQ }}$	$V_{\text {D }}$	$V_{\text {DDQ }}$	$V_{D D}$
B	$V_{S S}$	Q35	$\mathrm{V}_{\text {SS }}$	D35	MCL	$\underset{\substack{\text { MCL } \\(84 \mathrm{M})}}{ }$	$\begin{gathered} \mathrm{NC} \\ (\text { RSVD }) \end{gathered}$	$\begin{gathered} \mathrm{MCH} \\ (\mathrm{SIOM}) \end{gathered}$	PZT0	D0	$\mathrm{V}_{\text {SS }}$	Q0	$V_{\text {SS }}$
C	Q26	$V_{\text {DDQ }}$	D26	$V_{\text {DDQ }}$	$\mathrm{V}_{\text {SS }}$	SA	$V_{D D}$	SA	$\mathrm{V}_{S S}$	$V_{\text {DDQ }}$	D9	$V_{\text {DDQ }}$	Q9
D	$\mathrm{V}_{\text {SS }}$	Q34	$\mathrm{V}_{\text {SS }}$	D34	SA	$V_{\text {DDQ }}$	$\begin{gathered} \mathrm{NC} \\ (288 \mathrm{Mb}) \end{gathered}$	$V_{\text {DDQ }}$	SA	D1	$\mathrm{V}_{\text {SS }}$	Q1	$V_{S S}$
E	Q25	$V_{\text {DDQ }}$	D25	$V_{D D}$	$\mathrm{V}_{S S}$	SA	$\mathrm{V}_{S S}$	SA	$\mathrm{V}_{\text {SS }}$	$V_{D D}$	D10	$V_{\text {DDQ }}$	Q10
F	$\mathrm{V}_{\text {SS }}$	Q33	$\mathrm{V}_{\text {SS }}$	D33	SA	$V_{\text {DD }}$	$V_{\text {DDQ }}$	$V_{\text {DD }}$	SA	D2	$\mathrm{V}_{\text {SS }}$	Q2	$\mathrm{V}_{\text {SS }}$
G	Q24	Q32	D24	D32	$\mathrm{V}_{\text {SS }}$	SA	MZT1	SA	$\mathrm{V}_{\text {SS }}$	D3	D11	Q3	Q11
H	Q23	$V_{\text {DDQ }}$	D23	$\mathrm{V}_{\text {DDQ }}$	SA	$V_{\text {DDQ }}$	$\overline{\text { W }}$	$V_{\text {DDQ }}$	SA	$V_{\text {DDQ }}$	D12	$\mathrm{V}_{\mathrm{DDQ}}$	Q12
J	$\mathrm{V}_{\text {SS }}$	Q31	$\mathrm{V}_{\text {SS }}$	D31	$\mathrm{V}_{\text {SS }}$	SA	$\mathrm{v}_{\text {SS }}$	SA	$\mathrm{V}_{\text {SS }}$	D4	$\mathrm{V}_{\text {SS }}$	Q4	$\mathrm{V}_{\text {SS }}$
K	CQ1	$V_{\text {DDQ }}$	$V_{\text {REF }}$	V_{DD}	KD1	$V_{\text {DD }}$	CK	$V_{\text {DD }}$	KDO	$V_{\text {DD }}$	$V_{\text {REF }}$	$V_{\text {DDQ }}$	CQ0
L	$\overline{\mathrm{CQ}} 1$	$\mathrm{V}_{\text {SS }}$	QVLD1	$\mathrm{V}_{\text {SS }}$	$\overline{\mathrm{K} 1} 1$	$V_{\text {DDQ }}$	$\overline{\mathrm{CK}}$	$V_{\text {DDQ }}$	$\overline{\mathrm{KD}} 0$	$\mathrm{V}_{\text {SS }}$	QVLDO	$\mathrm{V}_{\text {SS }}$	$\overline{\mathrm{CQ}} 0$
M	$\mathrm{V}_{\text {SS }}$	Q22	$\mathrm{V}_{\text {SS }}$	D22	$\mathrm{V}_{\text {SS }}$	SA	$\mathrm{V}_{\text {SS }}$	SA	$\mathrm{V}_{\text {SS }}$	D13	$\mathrm{V}_{\text {SS }}$	Q13	$\mathrm{V}_{\text {SS }}$
N	Q30	$V_{\text {DDQ }}$	D30	$\mathrm{V}_{\mathrm{DDQ}}$	PLL	$V_{\text {DDQ }}$	$\overline{\mathrm{R}}$	$V_{\text {DDQ }}$	MCH	$V_{\text {DDQ }}$	D5	$\mathrm{V}_{\text {DDQ }}$	Q5
P	Q29	Q21	D29	D21	$\mathrm{V}_{\text {SS }}$	SA	MZTO	SA	$\mathrm{V}_{\text {SS }}$	D14	D6	Q14	Q6
R	$\mathrm{V}_{\text {SS }}$	Q20	V_{SS}	D20	MCH	V_{DD}	$V_{\text {DDQ }}$	$V_{\text {DD }}$	RST	D15	$\mathrm{V}_{\text {SS }}$	Q15	$\mathrm{V}_{\text {SS }}$
T	Q28	$V_{\text {DDQ }}$	D28	$V_{D D}$	$\mathrm{V}_{\text {SS }}$	SA	$\mathrm{V}_{\text {SS }}$	SA	$\mathrm{V}_{\text {SS }}$	$V_{\text {D }}$	D7	$V_{\text {DDQ }}$	Q7
U	$\mathrm{V}_{\text {SS }}$	Q19	$\mathrm{V}_{\text {SS }}$	D19	$\begin{gathered} \mathrm{NC} \\ (576 \mathrm{Mb}) \end{gathered}$	$V_{\text {DDQ }}$	$\begin{gathered} \mathrm{NC} \\ \text { (RSVD) } \end{gathered}$	VDDQ	$\begin{gathered} \text { (15C } \\ \text { (1152 Mb) } \end{gathered}$	D16	$\mathrm{V}_{\text {SS }}$	Q16	$\mathrm{V}_{\text {SS }}$
V	Q27	$V_{\text {DDQ }}$	D27	$V_{\text {DDQ }}$	$\mathrm{V}_{\text {SS }}$	$\underset{(\times 18)}{\mathrm{NU}_{1}}$	$V_{\text {D }}$	$\begin{aligned} & \text { SA } \\ & (B 2) \end{aligned}$	$\mathrm{V}_{\text {SS }}$	$V_{\text {DDQ }}$	D8	$V_{\text {DDQ }}$	Q8
W	$\mathrm{V}_{\text {SS }}$	Q18	$\mathrm{V}_{\text {SS }}$	D18	TCK	MCL	RCS	MCL	TMS	D17	$\mathrm{V}_{\text {SS }}$	Q17	$\mathrm{V}_{\text {SS }}$
Y	V_{DD}	$V_{\text {DDQ }}$	V_{DD}	$\mathrm{V}_{\mathrm{DDQ}}$	TDO	ZT	$\begin{gathered} \text { NC } \\ (\text { (RSVD }) \end{gathered}$	MCL	TDI	$\mathrm{V}_{\mathrm{DDQ}}$	V_{DD}	$\mathrm{V}_{\mathrm{DDQ}}$	V_{DD}

Notes:

1. Pins $5 \mathrm{~B}, 6 \mathrm{~W}, 7 \mathrm{~A}, 8 \mathrm{~W}$, and 8 Y must be tied Low in this device.
2. Pins $5 R$ and 9 N must be tied High in this device.
3. Pin 6 A is defined as mode pin CFG in the pinout standard. It must be tied Low in this device to select $x 36$ configuration.
4. Pin 8 B is defined as mode pin SIOM in the pinout standard. It must be tied High in this device to select Separate I/O configuration.
5. Pin 6B is defined as mode pin B4M in the pinout standard. It must be tied Low in this device to select Burst-of-2 configuration.
6. Pin 6 V is defined as address pin SA for x 18 devices. It is unused in this device, and must be left unconnected or driven Low.
7. Pin 8 V is defined as address pin SA for B 2 devices. It is used in this device.
8. Pin 7D is reserved as address pin SA for 288 Mb devices. It is a true no connect in this device.
9. Pin 5 U is reserved as address pin SA for 576 Mb devices. It is a true no connect in this device.
10. Pin $9 U$ is reserved as address pin $S A$ for 1152 Mb devices. It is a true no connect in this device.

Pin Description

Symbol	Description	Type
SA	Address - Read Address is registered on \uparrow CK and Write Address is registered on $\uparrow \overline{\mathrm{CK}}$.	Input
D[35:0]	Write Data - Registered on $\uparrow K D$ and $\uparrow \overline{K D}$ during Write operations. $\mathrm{D}[17: 0]$ - x18 and $\times 36$. D[35:18] - x36 only.	Input
Q [35:0]	```Read Data - Aligned with }\uparrow\textrm{CQ}\mathrm{ and }\uparrow\overline{\textrm{CQ}}\mathrm{ during Read operations. Q[17:0] - x18 and x36. Q[35:18] - x36 only.```	Output
QVLD[1:0]	Read Data Valid - Driven high one half cycle before valid Read Data.	Output
CK, $\overline{\mathrm{CK}}$	Primary Input Clocks - Dual single-ended. Used for latching address and control inputs, for internal timing control, and for output timing control.	Input
$\frac{\mathrm{KD}[1: 0]}{\mathrm{KD}[1: 0]}$	Write Data Input Clocks - Dual single-ended. Used for latching write data inputs. KD0, $\overline{\mathrm{KD}} 0$: latch Write Data ($\mathrm{D}[17: 0]$ in $\times 36, \mathrm{D}[8: 0]$ in $\times 18$). KD1, $\overline{\mathrm{KD}} 1$: latch Write Data ($\mathrm{D}[35: 18]$ in $\times 36, \mathrm{D}[17: 9]$ in $\times 18$).	Input
$\frac{\mathrm{CQ}[1: 0]}{\mathrm{CQ}[1: 0]}$	Read Data Output Clocks - Free-running output (echo) clocks, tightly aligned with read data outputs. Facilitate source-synchronous operation. $\mathrm{CQ} 0, \overline{\mathrm{CQ}} 0$: align with $\mathrm{Q}[17: 0]$ in $\times 36$, and $\mathrm{Q}[8: 0]$ in $\times 18$. $\mathrm{CQ1}, \mathrm{CQ} 1:$ align with $\mathrm{Q}[35: 18]$ in $\times 36$, and $\mathrm{Q}[17: 9]$ in $\times 18$.	Output
$\overline{\mathrm{R}}$	Read Enable - Registered on \uparrow CK. $\overline{\mathrm{R}}=0$ initiates a Read operation.	Input
\bar{W}	Write Enable - Registered on \uparrow CK. $\bar{W}=0$ initiates a Write operation.	Input
PLL	PLL Enable - Weakly pulled High internally. PLL = 0: disables internal PLL. PLL = 1: enables internal PLL.	Input
RST	Reset — Holds the device inactive and resets the device to its initial power-on state when asserted High. Weakly pulled Low internally.	Input
ZQ	Driver Impedance Control Resistor Input — Must be connected to V_{SS} through an external resistor RQ to program driver impedance.	Input
ZT	ODT Impedance Control Resistor Input - Must be connected to $\mathrm{V}_{\text {SS }}$ through an external resistor RT to program ODT impedance.	Input
RCS	Current Source Resistor Input - Must be connected to $\mathrm{V}_{S S}$ through an external $2 \mathrm{~K} \Omega$ resistor to provide an accurate current source for the PLL.	Input
MZT[1:0]	ODT Mode Select - Set the ODT state globally for all input groups. Must be tied High or Low. MZT[1:0] = 00: disables ODT on all input groups, regardless of PZT[1:0]. MZT[1:0] = 01: enables strong ODT on select input groups, as specified by PZT[1:0]. MZT[1:0] = 10: enables weak ODT on select input groups, as specified by PZT[1:0]. MZT[1:0] = 11: reserved.	Input

Symbol	Description	Type
PZT[1:0]	ODT Configuration Select - Set the ODT state for various combinations of input groups when MZT[1:0] = 01 or 10. Must be tied High or Low. $\operatorname{PZT}[1: 0]=00$: enables ODT on write data only. $\operatorname{PZT}[1: 0]=01$: enables ODT on write data and input clocks. PZT[1:0] = 10: enables ODT on write data, address, and control. $\mathrm{PZT}[1: 0]=11$: enables ODT on write data, input clocks, address, and control.	Input
$V_{D D}$	Core Power Supply	-
$\mathrm{V}_{\text {DDQ }}$	I/O Power Supply	-
$\mathrm{V}_{\text {REF }}$	Input Reference Voltage - Input buffer reference voltage.	-
$\mathrm{V}_{S S}$	Ground	-
TCK	JTAG Clock - Weakly pulled Low internally.	Input
TMS	JTAG Mode Select - Weakly pulled High internally.	Input
TDI	JTAG Data Input - Weakly pulled High internally.	Input
TDO	JTAG Data Output	Output
MCH	Must Connect High - May be tied to $\mathrm{V}_{\mathrm{DDQ}}$ directly or via a $1 \mathrm{k} \Omega$ resistor.	Input
MCL	Must Connect Low - May be tied to $\mathrm{V}_{\text {SS }}$ directly or via a $1 \mathrm{k} \Omega$ resistor.	Input
NC	No Connect - There is no internal chip connection to these pins. They may be left unconnected, or tied/ driven High or Low.	-
NU_{1}	Not Used Input - There is an internal chip connection to these input pins, but they are unused by the device. They are pulled Low internally. They may be left unconnected or tied/driven Low. They should not be tied/driven High.	Input
NU_{0}	Not Used Output - There is an internal chip connection to these output pins, but they are unused by the device. The drivers are tri-stated internally. They should be left unconnected.	Output

Power-Up and Reset Requirements

For reliability purposes, power supplies must power up simultaneously, or in the following sequence:
$\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDQ}}, \mathrm{V}_{\mathrm{REF}}$ and inputs.
Power supplies must power down simultaneously, or in the reverse sequence.
After power supplies power up, the following start-up sequence must be followed.
Step 1 (Recommended, but not required): Assert RST High for at least 1 ms .
While RST is asserted high:

- The PLL is disabled.
- The states of $\overline{\mathrm{R}}$, and $\overline{\mathrm{W}}$ control inputs are ignored.

Note: If possible, RST should be asserted High before input clocks begin toggling, and remain asserted High until input clocks are stable and toggling within specification, in order to prevent unstable, out-of-spec input clocks from causing trouble in the SRAM.

Step 2: Begin toggling input clocks.
After input clocks begin toggling, but not necessarily within specification:

- Q are placed in the non-Read state, and remain so until the first Read operation.
- QVLD are driven Low, and remain so until the first Read operation.
- CQ, $\overline{\mathrm{CQ}}$ begin toggling, but not necessarily within specification.

Step 3: Wait until input clocks are stable and toggling within specification.
Step 4: De-assert RST Low (if asserted High).
Step 5: Wait at least $224 \mathrm{~K}(229,376)$ cycles.
During this time:

- Driver and ODT impedances are calibrated. Can take up to 160 K cycles.
- The current source for the PLL is calibrated (based on RCS pin). Can take up to 64 K cycles.

Note: The PLL pin may be asserted High or de-asserted Low during this time. If asserted High, PLL synchronization begins immediately after the current source for the PLL is calibrated. If de-asserted Low, PLL synchronization begins after the PLL pin is asserted High (see Step 6). In either case, Step 7 must follow thereafter.

Step 6: Assert PLL pin High (if de-asserted Low).

Step 7: Wait at least $64 \mathrm{~K}(65,536)$ cycles for the PLL to lock.
After the PLL has locked:

- $\mathrm{CQ}, \overline{\mathrm{CQ}}$ begin toggling within specification.

Step 8: Begin initiating Read and Write operations.

Reset Usage

Although not generally recommended, RST may be asserted High at any time after completion of the initial power-up sequence described above, to reset the SRAM control logic to its initial power-on state. However, whenever RST is subsequently de-asserted Low (as in Step 4 above), Steps 5~7 above must be followed before Read and Write operations are initiated.

Note: Memory array content may be perturbed/corrupted when RST is asserted High.

PLL Operation

A PLL is implemented in these devices to control all output timing. It uses the CK input clock as a source, and is enabled when all of the following conditions are met:

1. RST is de-asserted Low, and
2. The PLL pin is asserted High, and
3. CK cycle time $\leq \mathrm{t}_{\mathrm{KHKH}}$ (max), as specified in the AC Timing Specifications section.

Once enabled, the PLL requires 64 K stable clock cycles in order to lock/synchronize properly.

When the PLL is enabled, it aligns output clocks and read data to input clocks (with some fixed delay), and it generates all mid-cycle output timing. See the Output Timing section for more information.

The PLL can tolerate changes in input clock frequency due to clock jitter (i.e. such jitter will not cause the PLL to lose lock/ synchronization), provided the cycle-to-cycle jitter does not exceed 200ps (see " $\mathrm{t}_{\text {KJITcc }}$ " in the AC Timing Specifications section for more information). However, the PLL must be resynchronized (i.e. disabled and then re-enabled) whenever the nominal input clock frequency is changed.

The PLL is disabled when any of the following conditions are met:

1. RST is asserted High, or
2. The PLL pin is de-asserted Low, or
3. CK is stopped for at least 30 ns , or CK cycle time $\geq 30 \mathrm{~ns}$.

On-Chip Error Correction

These devices implement a single-error correct, single-error detect (SEC-SED) ECC algorithm (specifically, a Hamming Code) on each 18-bit data word transmitted in DDR fashion on each 9-bit data bus (i.e., transmitted on $\mathrm{D} / \mathrm{Q}[8: 0], \mathrm{D} / \mathrm{Q}[17: 9], \mathrm{D} / \mathrm{Q}[26: 18]$, and $\mathrm{D} / \mathrm{Q}[35: 27]$). To accomplish this, 5 ECC parity bits (invisible to the user) are utilized per every 18 data bits (visible to the user). As such, these devices actually comprise 184 Mb of memory, of which 144 Mb are visible to the user.

The ECC algorithm cannot detect multi-bit errors. However, these devices are architected in such a way that a single SER event very rarely causes a multi-bit error across any given "transmitted data unit", where a "transmitted data unit" represents the data transmitted as the result of a single read or write operation to a particular address. The extreme rarity of multi-bit errors results in the SER mentioned previously (i.e., <0.002 FITs $/ \mathrm{Mb}$, measured at sea level).

Not only does the on-chip ECC significantly improve SER performance, but it can also free up the entire memory array for data storage. Very often SRAM applications allocate 1/9th of the memory array (i.e., one "error bit" per eight "data bits", in any 9-bit "data byte") for error detection (either simple parity error detection, or system-level ECC error detection and correction). Depending on the application, such error-bit allocation may be unnecessary in these devices, in which case the entire memory array can be utilized for data storage, effectively providing 12.5% greater storage capacity compared to SRAMs of the same density not equipped with on-chip ECC.

Clock Truth Table

SA		\bar{R} 个CK (t_{n})	\bar{W} 个CK (t_{n})	Current Operation (t_{n})	D		Q	
$\begin{aligned} & \uparrow C K \\ & \left(\mathrm{t}_{n}\right) \end{aligned}$	$\begin{aligned} & \uparrow \overline{\mathrm{CK}} \\ & \left(\mathrm{t}_{\mathrm{n}+1 / 2 / 2}\right) \end{aligned}$				$\begin{aligned} & \uparrow K D \\ & \left(t_{n}\right) \end{aligned}$	$\begin{aligned} & \uparrow \overline{K D} \\ & \left(\mathrm{t}_{\mathrm{n}+1 / 2 / 2}\right) \end{aligned}$	$\begin{aligned} & \uparrow \subset Q \\ & \left(\mathrm{t}_{\mathrm{n}+3}\right) \end{aligned}$	$\begin{gathered} \uparrow \overline{\mathrm{CQ}} \\ \left(\mathrm{t}_{\mathrm{n}+33^{1 / 2}}\right) \end{gathered}$
X	X	1	1	NOP	X	X		
X	V	1	0	Write Only	D1	D2		
V	X	0	1	Read Only	X	X	Q1	Q2
V	V	0	0	Read + Write	D1	D2	Q1	Q2

Notes:

1. $1=$ High; $0=$ Low; $V=$ Valid; $X=$ don't care.
2. D 1 and D 2 indicate the first and second pieces of Write Data transferred during Write operations.
3. Q1 and Q2 indicate the first and second pieces of Read Data transferred during Read operations.
4. Q pins are driven Low for one cycle in response to NOP and Write Only commands, 3 cycles after the command is sampled.

Input Timing

These devices utilize three pairs of positive and negative input clocks, $\mathrm{CK} \& \overline{\mathrm{CK}}$ and $\mathrm{KD}[1: 0]$ \& $\overline{\mathrm{KD}}[1: 0]$, to latch the various synchronous inputs. Specifically:
$\uparrow \mathrm{CK}$ and $\uparrow \overline{\mathrm{CK}}$ latch all address (SA) inputs.
$\uparrow \mathrm{CK}$ latches all control $(\overline{\mathrm{R}}, \overline{\mathrm{W}})$ inputs.
$\uparrow K D[1: 0]$ and $\uparrow \overline{K D}[1: 0]$ latch particular write data (D) inputs, as follows:

- $\uparrow \mathrm{KD} 0$ and $\uparrow \overline{\mathrm{KD}} 0$ latch $\mathrm{D}[17: 0]$ in x 36 , and $\mathrm{D}[8: 0]$ in x 18 .
- $\uparrow \mathrm{KD} 1$ and $\uparrow \overline{\mathrm{KD}} 1$ latch $\mathrm{D}[35: 18]$ in x 36 , and $\mathrm{D}[17: 9]$ in x 18 .

Output Timing

These devices provide two pairs of positive and negative output clocks (aka "echo clocks"), $\mathrm{CQ}[1: 0]$ \& $\overline{\mathrm{CQ}}[1: 0]$, whose timing is tightly aligned with read data in order to enable reliable source-synchronous data transmission.

These devices utilize a PLL to control output timing. When the PLL is enabled, it generates 0° and 180° phase clocks from \uparrow CK that control read data output clock ($\mathrm{CQ}, \overline{\mathrm{CQ}})$, read data (Q), and read data valid (QVLD) output timing, as follows:

- $\uparrow \mathrm{CK}+0^{\circ}$ generates $\uparrow \mathrm{CQ}[1: 0], \downarrow \overline{\mathrm{CQ}}[1: 0]$, Q1 active, and Q 2 inactive.
- $\uparrow \mathrm{CK}+180^{\circ}$ generates $\uparrow \overline{\mathrm{CQ}}[1: 0], \downarrow \mathrm{CQ}[1: 0], \mathrm{Q} 1$ inactive, Q 2 active, and QVLD active/inactive.

Note: Q1 and Q2 indicate the first and second pieces of read data transferred in any given clock cycle during Read operations.
When the PLL is enabled, $\uparrow C Q$ is aligned to an internally-delayed version of $\uparrow C K$. See the AC Timing Specifications for more information.
$\uparrow \operatorname{CQ}[1: 0]$ and $\uparrow \overline{C Q}[1: 0]$ align with particular Q and QVLD outputs, as follows:

- $\uparrow \mathrm{CQ} 0$ and $\uparrow \overline{\mathrm{CQ} 0}$ align with $\mathrm{Q}[17: 0], \mathrm{QVLD} 0$ in x 36 devices, and $\mathrm{Q}[8: 0]$, QVLD0 in x 18 devices.
- \uparrow CQ1 and $\uparrow \overline{C Q 1}$ align with Q[35:18], QVLD1 in x 36 devices, and Q[17:9], QVLD0 in x 18 devices.

Driver Impedance Control

Programmable Driver Impedance is implemented on the following output signals:

- CQ, $\overline{\mathrm{CQ}}, \mathrm{Q}, \mathrm{QVLD}$.

Driver impedance is programmed by connecting an external resistor RQ between the ZQ pin and V_{SS}.
Driver impedance is set to the programmed value within 160 K cycles after input clocks are operating within specification and RST is de-asserted Low. It is updated periodically thereafter to compensate for temperature and voltage fluctuations in the system.

Output Signal	Pull-Down Impedance (R OUTL)	Pull-Up Impedance (R $\mathbf{R O U T H}$)
$\mathrm{CQ}, \overline{\mathrm{CQ}}, \mathrm{Q}, \mathrm{QVLD}$	$\mathrm{RQ}^{*} 0.2 \pm 15 \%$	$\mathrm{RQ} * 0.2 \pm 15 \%$

Notes:

1. $R_{\text {OUTL }}$ and $R_{\text {OUTH }}$ apply when $175 \Omega \leq R Q \leq 225 \Omega$..
2. The mismatch between $R_{\text {OUTL }}$ and $R_{\text {OUTH }}$ is less than 10%, guaranteed by design.

ODT Impedance Control

Programmable ODT Impedance is implemented on the following input signals:

- CK, $\overline{\mathrm{CK}}, \mathrm{KD}, \overline{\mathrm{KD}}, \mathrm{SA}, \overline{\mathrm{R}}, \overline{\mathrm{W}}, \mathrm{D}$.

ODT impedance is programmed by connecting an external resistor RT between the ZT pin and V_{SS}.

ODT impedance is set to the programmed value within 160K cycles after input clocks are operating within specification and RST is de-asserted Low. It is updated periodically thereafter to compensate for temperature and voltage fluctuations in the system

Input Signal	PZT[1:0]	MZT[1:0]	Pull-Down Impedance ($\mathrm{R}_{\text {INL }}$)	Pull-Up Impedance ($\mathrm{R}_{\mathrm{INH}}$)
$\mathrm{CK}, \overline{\mathrm{CK}}, \mathrm{KD}, \overline{\mathrm{KD}}$	X0	XX	disabled	disabled
	X1	01	$\mathrm{RT} \pm 15 \%$	RT $\pm 15 \%$
		10	$R \mathrm{~T} * 2 \pm 20 \%$	$R T^{*} 2 \pm 20 \%$
SA, \bar{R}, \bar{W}	OX	XX	disabled	disabled
	1 X	01	$\mathrm{RT} \pm 15 \%$	RT $\pm 15 \%$
		10	$R T * 2 \pm 20 \%$	RT*2 $\pm 20 \%$
D	XX	01	RT $\pm 15 \%$	RT $\pm 15 \%$
		10	$R T * 2 \pm 20 \%$	$R T * 2 \pm 20 \%$

Notes:

1. When $\operatorname{MZT}[1: 0]=00, \mathrm{ODT}$ is disabled on all inputs. $\operatorname{MZT}[1: 0]=11$ is reserved for future use.
2. $R_{I N L}$ and $R_{I N H}$ apply when $105 \Omega \leq R T \leq 135 \Omega$.
3. The mismatch between $\mathrm{R}_{\mathrm{INL}}$ and $\mathrm{R}_{\mathrm{INH}}$ is less than 10%, guaranteed by design.
4. All ODT is disabled during JTAG EXTEST and SAMPLE-Z instructions.

Note: When ODT impedance is enabled on a particular input, that input should always be driven High or Low; it should never be tri-stated (i.e., in a High- Z state). If the input is tri-stated, the ODT will pull the signal to $\mathrm{V}_{\mathrm{DDQ}} / 2$ (i.e., to the switch point of the diff-amp receiver), which could cause the receiver to enter a meta-stable state and consume more power than it normally would. This could result in the device's operating currents being higher.

Absolute Maximum Ratings

Parameter	Symbol	Rating	Units	Notes
Core Supply Voltage	V_{DD}	-0.3 to +1.4	V	
I/O Supply Voltage	$\mathrm{V}_{\mathrm{DDQ}}$	-0.3 to V_{DD}	V	
Input Voltage (HS)	$\mathrm{V}_{\mathrm{IN} 1}$	-0.3 to $\mathrm{V}_{\mathrm{DDQ}}+0.3$	V	2
	$\mathrm{~V}_{\mathrm{IN} 2}$	$\mathrm{~V}_{\mathrm{DDQ}}-1.5$ to +1.7		
Input Voltage (LS)	$\mathrm{V}_{\mathrm{IN} 3}$	-0.3 to $\mathrm{V}_{\mathrm{DDQ}}+0.3$	V	3
Maximum Junction Temperature	T_{J}	125	${ }^{\circ} \mathrm{C}$	
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to 125	${ }^{\circ} \mathrm{C}$	

Notes:

1. Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Recommended Operating Conditions for an extended period of time may affect reliability of this component.
2. Parameters apply to High Speed Inputs: $C K, \overline{C K}, K D, \overline{K D}, S A, D, \bar{R}, \bar{W} . V_{I N 1}$ and $V_{I N 2}$ must both be met.
3. Parameters apply to Low Speed Inputs: RST, PLL, MZT, PZT.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Units	Notes
Core Supply Voltage	V_{DD}	1.2	1.25	1.35	V	
I/O Supply Voltage	$\mathrm{V}_{\mathrm{DDQ}}$	1.15	1.2	$\mathrm{~V}_{\mathrm{DD}}$	V	
Commercial Junction Temperature	T_{JC}	0	-	85	${ }^{\circ} \mathrm{C}$	
Industrial Junction Temperature	T_{J}	-40	-	100	${ }^{\circ} \mathrm{C}$	

Note: For reliability purposes, power supplies must power up simultaneously, or in the following sequence:
$\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDQ}}, \mathrm{V}_{\mathrm{REF}}$, and Inputs.
Power supplies must power down simultaneously, or in the reverse sequence.
Thermal Impedances

Package	$\begin{gathered} \theta \mathrm{JA}\left(\mathrm{C}^{\circ} / \mathrm{W}\right) \\ \text { Airflow }=0 \mathrm{~m} / \mathrm{s} \end{gathered}$	$\begin{gathered} \theta \mathrm{JA}\left(\mathrm{C}^{\circ} / \mathrm{W}\right) \\ \text { Airflow }=1 \mathrm{~m} / \mathrm{s} \end{gathered}$	$\begin{gathered} \theta \mathrm{JA}\left(\mathrm{C}^{\circ} / \mathrm{W}\right) \\ \text { Airflow }=2 \mathrm{~m} / \mathrm{s} \end{gathered}$	$\theta \mathrm{JB}\left(\mathrm{C}^{\circ} / \mathrm{W}\right)$	$\theta \mathrm{JC}\left(\mathrm{C}^{\circ} / \mathrm{W}\right)$
FBGA	13.67	10.28	9.31	3.08	0.13

I/O Capacitance

Parameter	Symbol	Min	Max	Units	Notes
Input Capacitance	$\mathrm{C}_{\text {IN }}$	-	5.0	pF	1,3
Output Capacitance	$\mathrm{C}_{\text {OUT }}$	-	5.5	pF	2,3

Notes:

1. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DDQ}} / 2$.
2. $V_{\text {OUT }}=V_{D D Q} / 2$.
3. $T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$.

Input Electrical Characteristics

Parameter	Symbol	Min	Typ	Max	Units	Notes
DC Input Reference Voltage	$V_{\text {REFdc }}$	0.48 * $\mathrm{V}_{\mathrm{DDQ}}$	0.50 * $\mathrm{V}_{\mathrm{DDQ}}$	0.52 * $\mathrm{V}_{\mathrm{DDQ}}$	V	-
DC Input High Voltage (HS)	$\mathrm{V}_{\text {IH1dc }}$	$\mathrm{V}_{\text {REF }}+0.08$	0.80 * $\mathrm{V}_{\mathrm{DDQ}}$	$\mathrm{V}_{\mathrm{DDQ}}+0.15$	V	1,6
DC Input Low Voltage (HS)	$\mathrm{V}_{\text {ILIdc }}$	-0.15	0.20 * $\mathrm{V}_{\text {DDQ }}$	$V_{\text {REF }}-0.08$	V	2,6
DC Input High Voltage (LS)	$\mathrm{V}_{1 \mathrm{H} 2 \mathrm{dc}}$	0.75 * $\mathrm{V}_{\mathrm{DDQ}}$	$V_{\text {DDQ }}$	$\mathrm{V}_{\mathrm{DDQ}}+0.15$	V	7
DC Input Low Voltage (LS)	$\mathrm{V}_{1 \mathrm{lL} 2 \mathrm{dc}}$	-0.15	0	$0.25 * V_{\text {DDQ }}$	V	7
AC Input Reference Voltage	$\mathrm{V}_{\text {REFac }}$	0.47 * $\mathrm{V}_{\text {DDQ }}$	0.50 * $\mathrm{V}_{\text {DDQ }}$	$0.53 * V_{\text {DDQ }}$	V	3
AC Input High Voltage (HS)	$\mathrm{V}_{\text {IH1ac }}$	$\mathrm{V}_{\text {REF }}+0.15$	0.80 * $\mathrm{V}_{\text {DDQ }}$	$V_{\text {DDQ }}+0.25$	V	1, 4~6
AC Input Low Voltage (HS)	$\mathrm{V}_{\text {ILlac }}$	-0.25	0.20 * $\mathrm{V}_{\mathrm{DDQ}}$	$\mathrm{V}_{\text {REF }}-0.15$	V	2, 4~6
AC Input High Voltage (LS)	$\mathrm{V}_{\text {IH2ac }}$	$\mathrm{V}_{\mathrm{DDQ}}-0.2$	$V_{\text {DDQ }}$	$V_{\text {DDQ }}+0.25$	V	4,7
AC Input Low Voltage (LS)	$\mathrm{V}_{\text {IL2ac }}$	-0.25	0	0.2	V	4,7

Notes:

1. "Typ" parameter applies when Controller $R_{\text {OUTH }}=40 \Omega$ and $S R A M R_{I N H}=R_{I N L}=120 \Omega$.
2. "Typ" parameter applies when Controller $\mathrm{R}_{\text {OUTL }}=40 \Omega$ and $\operatorname{SRAM~}_{\mathrm{R}_{\mathrm{INH}}}=\mathrm{R}_{\mathrm{INL}}=120 \Omega$.
3. $V_{\text {REFac }}$ is equal to $\mathrm{V}_{\text {REFdc }}$ plus noise.
4. $\mathrm{V}_{\mathrm{IH}} \max$ and V_{IL} min apply for pulse widths less than one-quarter of the cycle time.
5. Input rise and fall times must be a minimum of $1 \mathrm{~V} / \mathrm{ns}$, and within 10% of each other.
6. Parameters apply to High Speed Inputs: $\mathrm{CK}, \overline{\mathrm{CK}}, \mathrm{KD}, \overline{\mathrm{KD}}, \mathrm{SA}, \mathrm{D}, \overline{\mathrm{R}}, \overline{\mathrm{W}}$.
7. Parameters apply to Low Speed Inputs: RST, PLL, MZT, PZT.

Output Electrical Characteristics

Parameter	Symbol	Min	Typ	Max	Units	Notes
DC Output High Voltage	$\mathrm{V}_{\text {OHdc }}$	-	$0.80 * \mathrm{~V}_{\mathrm{DDQ}}$	$\mathrm{V}_{\mathrm{DDQ}}+0.15$	V	1,3
DC Output Low Voltage	$\mathrm{V}_{\mathrm{OLdc}}$	-0.15	$0.20 * \mathrm{~V}_{\mathrm{DDQ}}$	-	V	2,3
AC Output High Voltage	$\mathrm{V}_{\text {OHac }}$	-	$0.80 * \mathrm{~V}_{\mathrm{DDQ}}$	$\mathrm{V}_{\mathrm{DDQ}}+0.25$	V	1,3
AC Output Low Voltage	$\mathrm{V}_{\mathrm{OLac}}$	-0.25	$0.20 * \mathrm{~V}_{\mathrm{DDQ}}$	-	V	2,3

Note:

1. "Typ" parameter applies when $\operatorname{SRAM} \mathrm{R}_{\text {OUTH }}=40 \Omega$ and Controller $\mathrm{R}_{\mathrm{INH}}=\mathrm{R}_{\mathrm{INL}}=120 \Omega$.
2. "Typ" parameter applies when SRAM $\mathrm{R}_{\text {OUTL }}=40 \Omega$ and Controller $\mathrm{R}_{\mathrm{INH}}=\mathrm{R}_{\mathrm{INL}}=120 \Omega$.
3. Parameters apply to: $\mathrm{CQ}, \overline{\mathrm{CQ}}, \mathrm{Q}, \mathrm{QVLD}$.

Leakage Currents

Parameter	Symbol	Min	Max	Units	Notes
Input Leakage Current	$\mathrm{I}_{\mathrm{LI} 1}$	-2	2	uA	1,2
	$\mathrm{I}_{\mathrm{L} 2}$	-20	2	uA	1,3
	$\mathrm{I}_{\mathrm{LI} 3}$	-2	20	uA	1,4
Output Leakage Current	I_{LO}	-2	2	uA	5,6

Notes:

1. $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ to $\mathrm{V}_{\mathrm{DDQ}}$.
2. Parameters apply to $C K, \overline{C K}, K D, \overline{K D}, S A, D, \bar{R}, \bar{W}$ when $O D T$ is disabled. Parameters apply to MZT, PZT.
3. Parameters apply to PLL, TMS, TDI (weakly pulled up).
4. Parameters apply to RST, TCK (weakly pulled down).
5. $V_{O U T}=V_{S S}$ to $V_{D D Q}$.
6. Parameters apply to $\mathrm{CQ}, \overline{\mathrm{CQ}}, \mathrm{Q}, \mathrm{QVLD}, \mathrm{TDO}$.

Operating Currents

Parameter	Symbol	V_{DD} (nom)	600 MHz	714 MHz	800 MHz	Units
$\times 18$ Operating Current	I_{DD}	1.25 V	1500	1700	1900	mA
$\times 36$ Operating Current	I_{DD}	1.25 V	2100	2350	2550	mA

Notes:

1. $\mathrm{l}_{\mathrm{OUT}}=0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}.
2. Applies at 100% Reads + Writes.

AC Test Conditions

Parameter	Symbol	Conditions	Units
Core Supply Voltage	V_{DD}	1.2 to 1.35	V
I/O Supply Voltage	$\mathrm{V}_{\mathrm{DDQ}}$	1.15 to 1.25	V
Input Reference Voltage	$\mathrm{V}_{\mathrm{REF}}$	0.6	V
Input High Level	V_{IH}	0.9	V
Input Low Level	V_{IL}	0.3	V
Input Rise and Fall Time	-	2.0	$\mathrm{~V} / \mathrm{ns}$
Input and Output Reference Level	-	0.6	V

Note: Output Load Conditions RQ $=200 \Omega$. Refer to figure below.
AC Test Output Load

AC Timing Specifications (independent of device speed grade)

Parameter	Symbol	Min	Max	Units	Notes
Input Clock Timing					
CIk High Pulse Width	$\mathrm{t}_{\text {KHKL }}$	0.45	-	cycles	1
Clk Low Pulse Width	$\mathrm{t}_{\text {KLKH }}$	0.45	-	cycles	1
Clk High to $\overline{\mathrm{Clk}}$ High	tкнк̈н	0.45	0.55	cycles	2
Clk High to Write Data Clk High	$\mathrm{t}_{\text {KHKDH }}$	-250	+250	ps	3
Clk Cycle-to-Cycle Jitter	$\mathrm{t}_{\text {KJITcc }}$	-	60	ps	1,4,5
PLL Lock Time	$\mathrm{t}_{\text {Klock }}$	65,536	-	cycles	6
CIk Static to PLL Reset	$\mathrm{t}_{\text {Kreset }}$	30	-	ns	7,12
Output Timing					
Clk High to Output Valid / Hold	$\mathrm{t}_{\text {KHQVIX }}$	+0.4	+1.2	ns	8
Clk High to Echo Clock High	$\mathrm{t}_{\text {KHCQH }}$	+0.4	+1.2	ns	9
Echo Clk High to Output Valid / Hold	$\mathrm{t}_{\text {cohevix }}$	-120	+120	ps	10,12
Echo Clk High to Echo Clock High	$\mathrm{t}_{\text {COHCOH }}$	$0.5{ }^{*} \mathrm{KHKHH}^{\text {(nom) }}$ - 50	$0.5{ }^{*} \mathrm{~K}_{\text {KKK }}(\mathrm{nom})+50$	ps	11,12

Notes:

All parameters are measured from the mid-point of the object signal to the mid-point of the reference signal.

1. Parameters apply to $C K, \overline{C K}, K D, \overline{K D}$.
2. Parameter specifies $\uparrow C K \rightarrow \uparrow \overline{C K}$ and $\uparrow K D \rightarrow \uparrow \overline{K D}$ requirements.
3. Parameter specifies $\uparrow C K \rightarrow \uparrow K D$ and $\uparrow \overline{C K} \rightarrow \uparrow \overline{K D}$ requirements.
4. Parameter specifies Oycle-to-Cycle (C2C) Jitter (i.e. the maximum variation from clock rising edge to the next clock rising edge).

As such, it limits Period Jitter (i.e. the maximum variation in clock cycle time from nominal) to ± 30 ps.
And as such, it limits Absolute Jitter (i.e. the maximum variation in clock rising edge from its nominal position) to $\pm 15 \mathrm{ps}$.
5. The device can tolerated C2C Jitter greater than 60 ps, up to a maximum of 200 ps. However, when using a device from a particular speed grade, $\mathrm{t}_{\text {KHKH }}(\mathrm{min})$ of that speed grade must be derated (increased) by half the difference between the actual C2C Jitter and 60 ps . For example, if the actual C2C Jitter is 100 ps , then $\mathrm{t}_{\text {KНК }}$ (min) for the -714 speed grade is derated to 1.42 ns ($1.4 \mathrm{~ns}+0.5^{*}(100 \mathrm{ps}-60 \mathrm{ps})$).
6. $V_{D D}$ slew rate must be $<0.1 \mathrm{~V} D C$ per 50 ns for PLL lock retention. PLL lock time begins once $V_{D D}$ and input clock are stable.
7. Parameter applies to CK.
8. Parameters apply to Q , and are referenced to $\uparrow C K$.
9. Parameter specifies $\uparrow C K \rightarrow \uparrow C Q$ timing.
10. Parameters apply to $Q, Q V L D$ and are referenced to $\uparrow C Q \& \uparrow \overline{C Q}$.
11. Parameter specifies $\uparrow C Q \rightarrow \uparrow \overline{C Q}$ timing. $\mathrm{t}_{\mathrm{KHKH}}$ (nom) is the nominal input clock cycle time applied to the device.
12. Parameters are not tested. They are guaranteed by design, and verified through extensive corner-lot characterization.

AC Timing Specifications (variable with device speed grade)

Parameter	Symbol	-800		-714		-600		Units	Notes
		Min	Max	Min	Max	Min	Max		
Input Clock Timing									
Clk Cycle Time	$\mathrm{t}_{\text {KHKH }}$	1.25	6.0	1.4	6.0	1.66	6.0	ns	1
Input Setup, Hold, and Pulse Width Timing									
Input Valid to Clk High	$\mathrm{t}_{\text {IVKH }}$	150	-	150	-	160	-	ps	2
Clk High to Input Hold	$\mathrm{t}_{\text {KHIX }}$	150	-	150	-	160	-	ps	2
Input Pulse Width	$\mathrm{t}_{\text {IPW }}$	200	-	200	-	200	-	ps	2,3

Notes:

All parameters are measured from the mid-point of the object signal to the mid-point of the reference signal.

1. Parameters apply to $\mathrm{CK}, \overline{\mathrm{CK}}, \mathrm{KD}, \overline{\mathrm{KD}}$.
2. Parameters apply to $\overline{S A}$, and are referenced to $\uparrow C K \& \uparrow \overline{C K}$.

Parameters apply to $\overline{\mathrm{R}}, \overline{\mathrm{W}}$, and are referenced to $\uparrow \mathrm{CK}$.
Parameters apply to D, and are referenced to $\uparrow K D \& \uparrow \overline{K D}$.
3. Parameter specifies input pulse width requirements for each individual address, control, and data input. Per-pin deskew must be performed, to center the valid window of each individual input around the clock edge that latches it, in order for these parameters to be relevant to the application. The parameter is not tested; it is guaranteed by design and verified through extensive corner-lot characterization.

Read and Write Timing Diagram

JTAG Test Mode Description

These devices provide a JTAG Test Access Port (TAP) and Boundary Scan interface using a limited set of IEEE std. 1149.1 functions. This test mode is intended to provide a mechanism for testing the interconnect between master (processor, controller, etc.), ECCRAM, other components, and the printed circuit board. In conformance with a subset of IEEE std. 1149.1, these devices contain a TAP Controller and multiple TAP Registers. The TAP Registers consist of one Instruction Register and multiple Data Registers.

The TAP consists of the following four signals:

Pin	Pin Name	I/O	Description
TCK	Test Clock	I	Induces (clocks) TAP Controller state transitions.
TMS	Test Mode Select	I	Inputs commands to the TAP Controller. Sampled on the rising edge of TCK.
TDI	Test Data In	I	Inputs data serially to the TAP Registers. Sampled on the rising edge of TCK.
TDO	Test Data Out	0	Outputs data serially from the TAP Registers. Driven from the falling edge of TCK.

Concurrent TAP and Normal ECCRAM Operation

According to IEEE std. 1149.1, most public TAP Instructions do not disrupt normal device operation. In these devices, the only exceptions are EXTEST and SAMPLE-Z. See the Tap Registers section for more information.

Disabling the TAP

When JTAG is not used, TCK should be tied Low to prevent clocking the ECCRAM. TMS and TDI should either be tied High through a pull-up resistor or left unconnected. TDO should be left unconnected.

JTAG DC Operating Conditions

Parameter	Symbol	Min	Max	Units	Notes
JTAG Input High Voltage	$\mathrm{V}_{\mathrm{TIH}}$	$0.75 * \mathrm{~V}_{\mathrm{DDQ}}$	$\mathrm{V}_{\mathrm{DDQ}}+0.15$	V	1
JTAG Input Low Voltage	$\mathrm{V}_{\mathrm{TIL}}$	-0.15	$0.25 * \mathrm{~V}_{\mathrm{DDQ}}$	V	1
JTAG Output High Voltage	$\mathrm{V}_{\mathrm{TOH}}$	$\mathrm{V}_{\mathrm{DDQ}}-0.2$	-	V	2,3
JTAG Output Low Voltage	$\mathrm{V}_{\mathrm{TOL}}$	-	0.2	V	2,4

Notes:

1. Parameters apply to TCK, TMS, and TDI.
2. Parameters apply to TDO.
3. $\mathrm{I}_{\mathrm{TOH}}=-2.0 \mathrm{~mA}$.
4. $\mathrm{I}_{\mathrm{TOL}}=2.0 \mathrm{~mA}$.

JTAG AC Timing Specifications

Parameter	Symbol	Min	Max	Units
TCK Cycle Time	${ }_{\text {thth }}$	50	-	ns
TCK High Pulse Width	${ }_{\text {THTL }}$	20	-	ns
TCK Low Pulse Width	$\dagger_{\text {TLTH }}$	20	-	ns
TMS Setup Time	$\mathrm{t}_{\text {MVTH }}$	10	-	ns
TMS Hold Time	$t_{\text {THMX }}$	10	-	ns
TDI Setup Time	$\mathrm{t}_{\text {DVTH }}$	10	-	ns
TDI Hold Time	$\mathrm{t}_{\text {THDX }}$	10	-	ns
Capture Setup Time (Address, Control, Data, Clock)	t_{CS}	10	-	ns
Capture Hold Time (Address, Control, Data, Clock)	t_{CH}	10	-	ns
TCK Low to TDO Valid	$t_{\text {TLQV }}$	-	10	ns
TCK Low to TDO Hold	$t_{\text {TLQX }}$	0	-	ns

JTAG Timing Diagram

TAP Controller

The TAP Controller is a 16 -state state machine that controls access to the various TAP Registers and executes the operations associated with each TAP Instruction. State transitions are controlled by TMS and occur on the rising edge of TCK.
The TAP Controller enters the Test-Logic Reset state in one of two ways:

1. At power up.
2. When a logic 1 is applied to TMS for at least 5 consecutive rising edges of TCK.

The TDI input receiver is sampled only when the TAP Controller is in either the Shift-IR state or the Shift-DR state. The TDO output driver is enabled only when the TAP Controller is in either the Shift-IR state or the Shift-DR state.

TAP Controller State Diagram

TAP Registers

TAP Registers are serial shift registers that capture serial input data (from TDI) on the rising edge of TCK, and drive serial output data (to TDO) on the subsequent falling edge of TCK. They are divided into two groups: Instruction Registers (IR), which are manipulated via the IR states in the TAP Controller, and Data Registers (DR), which are manipulated via the DR states in the TAP Controller.

Instruction Register (IR - 3 bits)

The Instruction Register stores the various TAP Instructions supported by ECCRAM. It is loaded with the IDCODE instruction (logic 001) at power-up, and when the TAP Controller is in the Test-Logic Reset and Capture-IR states. It is inserted between TDI and TDO when the TAP Controller is in the Shift-IR state, at which time it can be loaded with a new instruction. However, newly loaded instructions are not executed until the TAP Controller has reached the Update-IR state.

The Instruction Register is 3 bits wide, and is encoded as follows:

$\begin{aligned} & \text { Code } \\ & (2: 0) \end{aligned}$	Instruction	Description
000	EXTEST	Loads the logic states of all signals composing the ECCRAM I/O ring into the Boundary Scan Register when the TAP Controller is in the Capture-DR state, and inserts the Boundary Scan Register between TDI and TDO when the TAP Controller is in the Shitt-DR state. Also transfers the contents of the Boundary Scan Register associated with output signals (Q, QVLD, $\mathrm{CQ}, \overline{\mathrm{CQ}})$ directly to their corresponding output pins. However, newly loaded Boundary Scan Register contents do not appear at the output pins until the TAP Controller has reached the Update-DR state. Also disables all ODT. See the Boundary Scan Register description for more information.
001	IDCODE	Loads a predefined device- and manufacturer-specific identification code into the ID Register when the TAP Controller is in the Capture-DR state, and inserts the ID Register between TDI and TDO when the TAP Controller is in the Shitt-DR state. See the ID Register description for more information.
010	SAMPLE-Z	Loads the logic states of all signals composing the ECCRAM I/O ring into the Boundary Scan Register when the TAP Controller is in the Capture-DR state, and inserts the Boundary Scan Register between TDI and TDO when the TAP Controller is in the Shitt-DR state. Also disables all ODT. Also forces Q output drivers to a High-Z state. See the Boundary Scan Register description for more information.
011	PRIVATE	Reserved for manufacturer use only.
100	SAMPLE	Loads the logic states of all signals composing the ECCRAM I/O ring into the Boundary Scan Register when the TAP Controller is in the Capture-DR state, and inserts the Boundary Scan Register between TDI and TDO when the TAP Controller is in the Shift-DR state. See the Boundary Scan Register description for more information.
101	PRIVATE	Reserved for manufacturer use only.
110	PRIVATE	Reserved for manufacturer use only.
111	BYPASS	Loads a logic 0 into the Bypass Register when the TAP Controller is in the Capture-DR state, and inserts the Bypass Register between TDI and TDO when the TAP Controller is in the Shift-DR state. See the Bypass Register description for more information.

Bypass Register (DR - 1 bit)

The Bypass Register is one bit wide, and provides the minimum length serial path between TDI and TDO. It is loaded with a logic 0 when the BYPASS instruction has been loaded in the Instruction Register and the TAP Controller is in the Capture-DR state. It is inserted between TDI and TDO when the BYPASS instruction has been loaded into the Instruction Register and the TAP Controller is in the Shift-DR state.

ID Register (DR - 32 bits)

The ID Register is loaded with a predetermined device- and manufacturer-specific identification code when the IDCODE instruction has been loaded into the Instruction Register and the TAP Controller is in the Capture-DR state. It is inserted between TDI and TDO when the IDCODE instruction has been loaded into the Instruction Register and the TAP Controller is in the Shift-DR state.

The ID Register is 32 bits wide, and is encoded as follows:

See BSDL Model (31:12)	GSI ID $(11: 1)$	Start Bit $\mathbf{(0)}$
$x \times x x \times x$	00011011001	1

Bit 0 is the LSB of the ID Register, and Bit 31 is the MSB. When the ID Register is selected, TDI serially shifts data into the MSB, and the LSB serially shifts data out through TDO.

Boundary Scan Register (DR - 129 bits)

The Boundary Scan Register is equal in length to the number of active signal connections to the ECCRAM (excluding the TAP pins) plus a number of place holder locations reserved for functional and/or density upgrades. It is loaded with the logic states of all signals composing the ECCRAM's I/O ring when the EXTEST, SAMPLE, or SAMPLE-Z instruction has been loaded into the Instruction Register and the TAP Controller is in the Capture-DR state. It is inserted between TDI and TDO when the EXTEST, SAMPLE, or SAMPLE-Z instruction has been loaded into the Instruction Register and the TAP Controller is in the Shift-DR state.

Additionally, the contents of the Boundary Scan Register associated with the ECCRAM outputs (Q, QVLD, CQ, $\overline{\mathrm{CQ}}$) are driven directly to the corresponding ECCRAM output pins when the EXTEST instruction is selected. However, after the EXTEST instruction has been selected, any new data loaded into Boundary Scan Register when the TAP Controller is in the Shift-DR state does not appear at the output pins until the TAP Controller has reached the Update-DR state.

The value captured in the boundary scan register for NU pins is determined by the external pin state. The value captured in the boundary scan register for NC pins is 0 regardless of the external pin state. The value captured in the Internal Cell (Bit 129) is 1.

Output Driver State During EXTEST

EXTEST allows the Internal Cell (Bit 129) in the Boundary Scan Register to control the state of Q drivers. That is, when Bit $129=$ 1, Q drivers are enabled (i.e., driving High or Low), and when Bit $129=0$, Q drivers are disabled (i.e., forced to High-Z state). See the Boundary Scan Register section for more information.

ODT State During EXTEST and SAMPLE-Z

ODT on all inputs is disabled during EXTEST and SAMPLE-Z.

Boundary Scan Register Bit Order Assignment

The table below depicts the order in which the bits are arranged in the Boundary Scan Register. Bit 1 is the LSB and Bit 129 is the MSB. When the Boundary Scan Register is selected, TDI serially shifts data into the MSB, and the LSB serially shifts data out through TDO.

Bit	Pad								
1	7L	29	12F	57	12W	85	1 T	113	1 C
2	7K	30	11G	58	10W	86	4R	114	3 C
3	9L	31	13G	59	8 V	87	2R	115	2B
4	9K	32	10G	60	9 U	88	3P	116	4B
5	8 J	33	12G	61	8 T	89	1 P	117	5A
6	7H	34	11H	62	9R	90	4 P	118	6A
7	9 H	35	13H	63	8P	91	2 P	119	6B
8	7G	36	10 J	64	9 N	92	3 N	120	6 C
9	8G	37	12 J	65	8M	93	1N	121	5D
10	9 F	38	13K	66	6M	94	4M	122	6E
11	8E	39	13L	67	7 N	95	2M	123	5F
12	7D	40	11L	68	5 N	96	3L	124	6G
13	9D	41	12M	69	7 P	97	1L	125	5 H
14	8C	42	10M	70	6 P	98	1K	126	6 J
15	7B	43	13N	71	5R	99	2 J	127	5 K
16	8B	44	11 N	72	6 T	100	4 J	128	5L
17	9B	45	12P	73	7 U	101	1 H	129	Internal
18	7 A	46	10P	74	5 U	102	3 H		
19	9A	47	13P	75	6 V	103	2G		
20	10B	48	11 P	76	6 W	104	4G		
21	12B	49	12R	77	$7 Y$	105	1G		
22	11 C	50	10R	78	4W	106	3G		
23	13 C	51	13T	79	2W	107	2F		
24	10D	52	11 T	80	3 V	108	4F		
25	12D	53	12 U	81	1V	109	1E		
26	11 E	54	10 U	82	4 U	110	3E		
27	13E	55	13 V	83	2 U	111	2D		
28	10F	56	11 V	84	37	112	4 D		

260-Pin BGA Package Drawing (Package GK)

-	$0.05(4 \mathrm{X})$

Ball Pitch:	1.00	Substrate Thickness:	0.51
Ball Diameter:	0.60	Mold Thickness:	-

Ordering Information — GSI SigmaQuad-IIIe ECCRAM

Org	Part Number	Type	Package	Speed (MHz)	TA
$8 M \times 18$	GS81313LQ18GK-800	SigmaQuad-IIIe B2	ROHS-Compliant 260-Pin BGA	800	C
$8 M \times 18$	GS81313LQ18GK-714	SigmaQuad-IIIe B2	ROHS-Compliant 260-Pin BGA	714	C
$8 M \times 18$	GS81313LQ18GK-600	SigmaQuad-IIIe B2	ROHS-Compliant 260-Pin BGA	600	C
$8 M \times 18$	GS81313LQ18GK-800I	SigmaQuad-IIIe B2	ROHS-Compliant 260-Pin BGA	800	I
$8 M \times 18$	GS81313LQ18GK-714I	SigmaQuad-IIIe B2	ROHS-Compliant 260-Pin BGA	714	I
$8 M \times 18$	GS81313LQ18GK-600I	SigmaQuad-IIIe B2	ROHS-Compliant 260-Pin BGA	600	I
$4 M \times 36$	GS81313LQ36GK-800	SigmaQuad-IIIe B2	ROHS-Compliant 260-Pin BGA	800	C
$4 M \times 36$	GS81313LQ36GK-714	SigmaQuad-IIIe B2	ROHS-Compliant 260-Pin BGA	714	C
$4 M \times 36$	GS81313LQ36GK-600	SigmaQuad-IIIe B2	ROHS-Compliant 260-Pin BGA	600	C
$4 M \times 36$	GS81313LQ36GK-800I	SigmaQuad-IIIe B2	ROHS-Compliant 260-Pin BGA	800	I
$4 M \times 36$	GS81313LQ36GK-714I	SigmaQuad-IIIe B2	ROHS-Compliant 260-Pin BGA	714	I
$4 M \times 36$	GS81313LQ36GK-600I	SigmaQuad-IIIe B2	ROHS-Compliant 260-Pin BGA	600	I

Note: C = Commercial Temperature Range. I = Industrial Temperature Range.

Revision History

Rev. Code	Types of Changes Format or Content	Revisions
GS81313LQ1836GK_r1.05	-	- Initial public release.
GS81313LQ1836GK_r1.06	Content	- Removed leaded BGA package support.
GS81313LQ1836GK_r1.07	Content	- Miscellaneous cleanup.
GS81313LQ1836GK_r1.08	Content	- Increased $\mathrm{V}_{\mathrm{DD}}(\max)$ to 1.35 V . - Added package thermal impedances. - Added $\mathrm{t}_{\text {KHKH }}$ (max) specs. - Revised tKHKDH specs. - Revised $\mathrm{t}_{\mathrm{KHQV}}, \mathrm{t}_{\mathrm{KHQX}}$, and $\mathrm{t}_{\mathrm{KHCQH}}$ specs. - Revised $\mathrm{t}_{\mathrm{CQHQV}}$ and $\mathrm{t}_{\mathrm{CQHQX}}$ specs. - Banner changed to "Preliminary", to reflect ES status.
GS81313LQ1836GK_r1.09	Content	- Updated speed bins to -800, -714 , and -600 . - Added input pulse width specs.
GS81313LQ1836GK_r1.10	Content	- Added I_{DD} Specifications.
GS81313LQ1836GK_r1.11	Content	- Removed "Preliminary" from data sheets.
GS81313LQ1836GK_r1.12	Content	- Increased $\mathrm{V}_{\mathrm{DD}}(\mathrm{min})$ to 1.2 V for 600 MHz speed bin. $\mathrm{V}_{\mathrm{DD}}(\mathrm{min})$ is now the same value for all speed bins.
GS81313LQ1836GK_r1.13	Content	- A $2 \mathrm{~K} \Omega$ resistor connected between RCS and $\mathrm{V}_{S S}$ is now required; previously, it was optional.
GS81313LQ1836GK_r1.14	Content	- Changed Junction Temp to Max Junction Temp in AbsMax table

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for SRAM category:
Click to view products by GSI Technology manufacturer:
Other Similar products are found below :
5962-8855206XA CY6116A-35DMB CY7C128A-45DMB CY7C1461KV33-133AXI CY7C199-45LMB CYDM128B16-55BVXIT GS8161Z36DD-200I GS88237CB-200I R1QDA7236ABB-20IB0 RMLV0408EGSB-4S2\#AA0 IS64WV3216BLL-15CTLA3 IS66WVE4M16ECLL-70BLI PCF8570P K6T4008C1B-GB70 CY7C1353S-100AXC AS6C8016-55BIN 515712X IS62WV51216EBLL45BLI IS63WV1288DBLL-10HLI IS66WVE2M16ECLL-70BLI 47L16-E/SN IS66WVE4M16EALL-70BLI IS62WV6416DBLL-45BLI IS61WV102416DBLL-10TLI CY7C1381KV33-100AXC CY7C1381KV33-100BZXI CY7C1373KV33-100AXC CY7C1381KVE33-133AXI CY7C4042KV13-933FCXC 8602501XA 5962-3829425MUA 5962-8855206YA 5962-8866201XA 5962-8866201YA 5962-8866204TA 5962-8866206MA 5962-8866207NA 5962-8866208UA 5962-8872502XA 5962-8959836MZA 5962-8959841MZA 5962-9062007MXA 5962-9161705MXA N08L63W2AB7I 7130LA100PDG GS81284Z36B-250I M38510/28902BVA IS62WV12816ALL-70BLI 59628971203XA 5962-8971202ZA

