No.:

SPECIFICATIONS

Product Type	Multilayer Polymer Aluminum Electrolytic Capacitors
Series	600L
Description	2V330µF, V
Part No.	PA600LV337M0D

Fujian Guoguang Xinye Science & Technology Co., Ltd.

Address: Room 1110, Floor 1, No.160, Jiangbin East Road, Mawei District, Fuzhou City, Fujian Province TEL: +86-591-83989615/83989616 / FAX: +86-591-83977125 (P.C. 350015)

Date	Approved by	Checked by	Drawn by
2020/8/7	Yuming Huang	Qiushui Zhang	Changfeng Wei

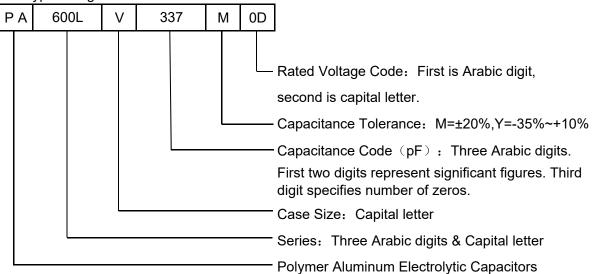
User	

Change History of Specification

Issued Date	Contents	Reason	Page	Mark	lssue No.
2020/8/7	Original	-	1 to 11	-	0

Contents

No.	Item	Page
1	Scope	4
2	Explanation of Part Numbers	4
3	Product Specifications	4
4	Dimensions	5
5	Characteristics	5~7
6	Marking	8
7	Tape & Reel Packaging	8
8	Application Guidelines	9~11
9	HSF Compliance Declaration	11



1. Scope

This specification applies to 600L series polymer aluminum electrolytic capacitors for use in electronic equipment.

2. Explanation of Part Numbers

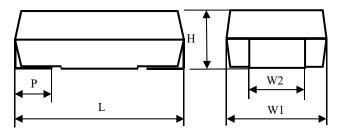
2.1 Type Designation

2.2 Rated Voltage Code

Rated Voltage (V.DC)	2
Rated Voltage Code	0D

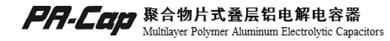
3. Product Specifications

Item	Performance Characteristics		
Operating Temperature Range	-55 °C∼+105 °C		
Rated Voltage(U _R)	2 V		
Nominal Capacitance(C_N)	330 µF		
Capacitance Range	264 µF∼396 µF	20 ℃,120 Hz	
Leakage Current(<i>I</i> _L)	66 μΑ (max.)	20 $^\circ C$, after 2 minutes	
Dissipation Factor(tanδ)	0.06 (max.)	20 ℃,120 Hz	
Equivalent Series Resistance(R_{ESR})	9 mΩ (max.)	20 ℃,100 kHz	


		C _N	tanδ	I _L	$R_{\rm ESR}$	Rated Ripple Current
Part Number	U _R	120Hz/20 ℃	120Hz/20 ℃	2 min/20 ℃	100kHz/20 ℃	100kHz/20 ℃~105 ℃
	(V.DC)	(µF)	max.	max. (µA)	max. (mΩ)	max. (A)
PA600LV337M0D	2	330	0.06	66	9	5.4

4. Dimensions

4.1 Outline Drawing



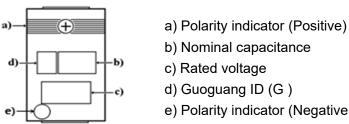
4.2 Size Code and Dimensions

	Dimensions					
	mm					
Size Code	L±0.3	W1±0.3	H±0.2	P±0.3	W2±0.1	
V	7.3	4.3	1.9	1.3	2.4	

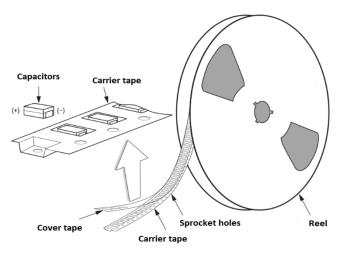
5. Characteristics

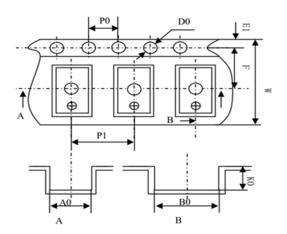
No.	ltem	Outline of Test Method	Characteristics		
1	Capacitance	Measuring frequency: 120 Hz±12 Hz	264 µF~396 µF		
	Range	Measuring temperature: 20 $^\circ\!\mathrm{C}$	204 μι 330 μι		
		Protective resistor: 1 000 Ω			
2	Leakage Current	Applied voltage: Rated voltage	66 µA (max.)		
2	(<i>I</i> _L)	Measuring: after 2 minutes	ου μΑ (max.)		
		Measuring temperature: 20 $^\circ\!\!\mathbb{C}$			
3	Dissipation	Measuring frequency: 120 Hz±12 Hz	0.06 (max.)		
5	Factor (tanδ)	Measuring temperature: 20 $^\circ\!\mathrm{C}$	0.00 (max.)		
4	Equivalent Series	Measuring frequency:100 kHz±10 Hz	9 mΩ (max.)		
	Resistance	Measuring temperature: 20 $^\circ\!\mathrm{C}$	· · · · ·		
	Resistance to Soldering Heat	Test method: the reflow method	Visual examination	No visible damage Legible marking	
5		Reflow temperature profile:	Capacitance change(ΔC/C)	≤±10% of initial measured value	
5		See Chapter 8.7	tanδ	≤initial limit	
		Recovery period: 24 h ±2 h	R _{ESR}	≤initial limit	
			/L	≤initial limit	
6	Solderability	Test method: the reflow method	Visual examination	Areas to be soldered shall be covered with a new solder coating with no more than a small amount of scattered imperfections such as pinholes or un- wetted or de-wetted areas. These imperfections shall	
				not be concentrated in one area	

No.	ltem	Outline of Test Method	Cha	racteristics
		Solvent to be used: IPA		No visible damage
	Solvent	Solvent temperature: 23 ℃±5 ℃	Visual examination	Legible marking
7	Resistance of	Method 1 (with rubbing)		
	the Marking	Rubbing material: cotton wool		
		Recovery time: not applicable		
		Solvent to be used: IPA	Visual examination	No visible damage
	Component	Solvent temperature: 23 °C±5 °C		Legible marking
8	Solvent	Duration of immersion: 5 min±0.5 min		
	Resistance	Method 2 (without rubbing)		
		Recovery time: 48 h		
		Deflection D: 1 mm	Visual examination	No visible damage
9	Substrate	The number of bends: one	Capacitance change(ΔC/C)	≤±5% of initial measured value
-	Bending Test	The substrate shall be maintained for 20 s±1 s.	tanδ	≤initial limit
		Capacitance shall be measured with printed board in bent position.		
		Push direction: side	Visual examination	No visible damage
10	Shear Test	Force: 5 N		
		Holding time: 10 s±1 s		
		<i>T</i> _A =-55 ℃±3 ℃	Visual examination	No visible damage Legible marking
11	Rapid Change	7 _B =+105 ℃±3 ℃	Capacitance change $(\Delta C/C)$	≤±10% of initial measured value
	of Temperature	Five cycles	tanδ	≤initial limit
		Duration: <i>t</i> ₁ = 30 min	/ _L	\leq initial limit
		Recovery time: 1 h \sim 2 h		
		Dry heat:	Visual examination	No visible damage Legible marking
		Temperature: +105 ℃±3 ℃		Legible marking
		Duration: 16 h	Capacitance	\leq ±10% of initial measured
		Recovery time: ≥4 h	change $(\Delta C/C)$	value
		Damp heat, cyclic, test Db,	tanδ	≤initial limit
		first cycle:	/ _L	≤initial limit
		Duration: 24 h		
		Temperature: 55 ℃		
12	Climatic	Cold:		
12	Sequence	Temperature: -55 ℃±3 ℃		
		Duration: 2 h		
		Recovery time: ≥4 h		
		Damp heat, cyclic, test Db,		
		remaining cycles:		
		Number of cycles: 1		
		Duration: 24 h		
		Temperature: 55 ℃		
		Recovery time: 1 h \sim 2 h		


P用-Cap 聚合物片式叠层铝电解电容器 Multilayer Polymer Aluminum Electrolytic Capacitors

No.	ltem	Outline of Test Method	Cha	racteristics
		Temperature: 60 °C±2 °C	Visual examination	No visible damage Legible marking
13	Damp Heat, 13 Steady State	Humidity: (93±3) %RH	Capacitance change(ΔC/C)	-20%~+70% of initial measured value
10	Oleady Olale	No voltage shall be applied	tanδ	\leqslant 2 times initial limit
		Duration: 21 d	/ L	\leqslant 2 times initial limit
		Recovery time: 1 h \sim 2 h		
		The capacitors shall be measured at each temperature step:		
		Step 1: 20 ℃±2 ℃		
		(Initial value measuring)		
14	Characteristics at High and Low	Step 2: -55 ℃±3 ℃	Capacitance change(ΔC/C) tanδ	≤±20% of value measured in Step 1 ≤2 times initial limit
	Temperature		Capacitance	≤±20% of value measured
		Step 3: +105 °C±3 °C	change $(\Delta C/C)$	in Step 1
			tanδ ,	<2 times initial limit
			/ _L	≪5 times initial limit
		Temperature: 15 °C \sim 35 °C	Visual examination	No visible damage Legible marking
15	Charge and Discharge	Number of cycles: 10 ⁶	Capacitance change $(\Delta C/C)$	≤±20%of initial measured value
15		Duration of charge: 0.5 s	tanδ	\leqslant 1.5 times initial limit
		Duration of discharge: 0.5 s	R _{ESR}	\leqslant 2 times initial limit
			/ _L	≤initial limit
		Test temperature: +105 ℃±3 ℃	Visual examination	No visible damage Legible marking
16	Endurance	Voltage: U _R	Capacitance change $(\Delta C/C)$	≤±20%of initial measured value
10	Endurance	Duration: 2 000 h	tanδ	\leqslant 1.5 times initial limit
		Recovery: 1 h \sim 2 h	R _{ESR}	\leqslant 2 times initial limit
			/ _L	≤initial limit
		Test temperature: +105 ℃±3 ℃	Visual examination	No visible damage Legible marking
17	Storage at High Temperature	Duration: 500 ⁺²⁴ 0 h	Capacitance change(ΔC/C)	≤±20%of initial measured value
		Recovery: 16 h	tanδ	≤initial limit
			/ _L	\leqslant 2 times initial limit
		Test temperature: 15 ℃~35 ℃ Voltage: 1.25 <i>U</i> _R	Visual examination	No visible damage Legible marking
40		Duration of charge: 30 s	Capacitance	≤±10% of initial measured
18	Surge	Duration of no load: 5 min 30 s	change (ΔC/C)	value
		Number of cycles: 1 000	tanδ	≤initial limit
		Protective resistor: 1 000 Ω	/ L	\leq initial limit


6. Marking



- e) Polarity indicator (Negative)

7. Tape & Reel Packaging

Packaging Diagram:

Case Size		Tape Dimensions (mm)				
Code	L×W1×H	P0	P1	A0	B0	W
		±0.10	±0.10	±0.20	±0.20	±0.20
	(mm)	4	8	4.6	7.6	12
V	7.3×4.3×1.9	K0	E1	F	D0	
		±0.10	±0.10	±0.10	+0.10/ _{-0.00}	
		2.3	1.75	5.5	1.5	

Packing Quantity:

<u> </u>					
Reel size	180mm	330mm			
Reel Size	(7")	(13")			
Quantity (pcs)	1,200	4,200			

8. Application Guidelines

To ensure the stable quality of the capacitor, and make full use of its capability, please read following guidelines before use:

8.1 Polarity

PA-Cap polymer aluminum electrolytic capacitors have polarity. Polarity must be identified before use. If the polarity is reversed, the leakage current of this capacitor will increase rapidly, even more it will make the circuit short.

8.2 Voltage

The application of over-voltage will increase the leakage current, so that the capacitor will be damaged because of the rise of its interior temperature. The sum of DC voltage and ripple voltage should not exceed the rated voltage.

8.3 Temperature

The capacitor must be used in or under the rated temperature. Operation at temperatures exceeding specifications will cause large changes in electrical properties. The potential deterioration will also lead to the failure of the capacitor. When thinking about the operating temperature of the capacitor, be sure to include not only the ambient temperature but also interior heat coming from the components.

8.4 Ripple current

Use the capacitor in permitted ripple current. When excessive ripple current is applied to the capacitor, it will cause the increasement of leakage current, short circuits and decreasing in life.

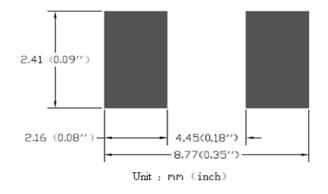
8.5 Storage of capacitor

Capacitors should be stored in a moisture proof and without direct sunlight environment. The prefer temperature is 5 °C~30 °C, relative humidity is lower than 60% RH.

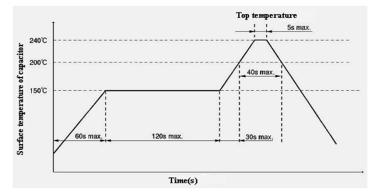
Moisture Sensitivity Level: Level 3.

To maintain good mounting capability, please keep the capacitors in the state as delivered. Products should be all used within the storage term after opening the package. Please put the remaining products back into the packaging bag and seal the unsealed part with adhesive tape.

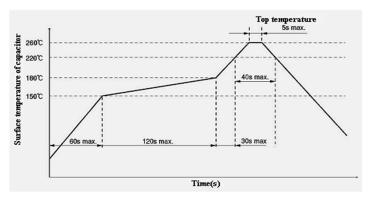
Storage term of the products: 24 months after manufactured (before opening the package), 7 days after opening. After the storage limit, drying treatment is necessary, condition: 50 $^{\circ}C$ ±2 $^{\circ}C$, 100 h to 200 h.


8.6 Capacitor measurement

Excessive impact current resulted from charge and discharge hastily will cause the increasement of leakage current, even short circuit. Therefore the capacitor should be serially attached to a 1 k Ω protective resistor, and the applied voltage should be gradually increased to be equal to the rated voltage during the leakage current measurement. Before measuring other parameters, 1 K Ω resistor should be connected in series to make the capacitor discharge fully.



8.7 Capacitor mounting


Recommended land-pattern:

PA-Cap is suit to re-flow soldering, recommended curve for soldering is as following.

Recommended curve for lead free soldering is as following.

When using the electric iron, the electric soldering bit should not touch the case. Make sure that the soldering temperature is no more than 350 $^\circ$ C and the time is shorter than 3 seconds.

Before mounting, please confirm whether the lead size is suit to the designed dimensions of the circuit board. Do not distort and apply strong force to the capacitor during mounting, otherwise the electrical performance of the capacitor will be affected greatly, even damaged. After it is soldered on PCB board, do not remove it with strong force.

In addition, re-flow soldering should be no more than two times.

- 8.8 Capacitors cannot be used in the following environments:
 - a) Contact directly with water, salt water or oil.
 - b) Full of deleterious chemically active gases.
 - c) Exposed to direct sunlight.

9. HSF Compliance Declaration

This product conforms to the ROHS 2011 / 65 / EU standard and the IEC 61249-2-21:2003 standard .

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Organic Polymer Capacitors category:

Click to view products by Guoguang Elec manufacturer:

Other Similar products are found below :

750-1809 SEAU0A0102G MPP104K6130714LC MPP223J5130508LC MPP104K6130612LC MPP684K4241219LC PPS333KD241017LC MPP472K4130408LC PCZ1V221MCL1GS HHXD500ARA470MHA0G NPXB1001B271MF NPXB1101B391MF NPXC0571B221MF NPXC0701B331MF NPXB0901B391MF NPXD0701A471MF HHXD630ARA330MJA0G HHXD350ARA270MF61G HHXD350ARA220ME61G HHXD350ARA101MHA0G HHXD350ARA680MF80G APXJ200ARA151MF61G RS81C271MDN1CG APSF6R3ELL821MF08S PM101M016E058PTR PM101M025E077PTR SPZ1EM221E10P25RAXXX APSE2R5ETD821MF08S SPZ1EM681F14000RAXXX SPZ1AM102F11000RAXXX SPV1VM471G13000RAXXX SPZ1VM821G18000RAXXX SPV1HM331G15000RAXXX SVZ1EM221E09E00RAXXX PM101M035E077PTR HV1A227M0605PZ HV1C107M0605PZ HV1C227M0607PZ HV1H107M0810PZ HV1E107M0607PZ HV1V106M0605PZ HV1V476M0605PZ HV1H227M1010PZ HV0J337M0607PZ HV1A477M0607PZ HV1E566M0605PZ HV1V227M0810PZ HV0J108M0810PZ M2101M035C070RT SVZ1EM471FBRE00RAXXX