

Programmable D.C. Electronic Load

INSTEK AMERICA CORP.

TEXIO TECHNOLOGY CORPORATION.
 Yokohama, Kohokukuku, Yokohama, Kanagazan
222-0333
apan ${ }_{T}^{T+81-45-620 \cdot 230}$

 T+82-2.-3439.2205 $\mathrm{F}+82$.
India subsidiar
CW INSTEK INDIA LL
CW INSTEK INDIA LLP.

GשIMSTEK
Simply Reliable

FEATURES

- Operating Voltage (DC) : 0~150V(PEL-3000)/0~800V(PEL-3000H
- Operating Mode : C.C/C.V/C.R/C.P/C.C+C.V/C.R+C.V/C.P+C.V
- Parallel Connection of Inputs for Higher Capacity (Max : 9,450W)
- Support of High Slew Rate : Max 16A/us(PEL-3000)/0.84A/us(PEL-3000H)
- Run Program Function (Go/NoGo Test)
- Sequence Function for High Efficient Load Simulations
- Dynamic (Switching) Function : $0.0166 \mathrm{~Hz} \sim 20 \mathrm{kHz}$
- Soft Start Function : Off/On ($1 \sim 200 \mathrm{~ms}$, Res. 1 ms)
- Adjustable OCP/OVP/OPP/UVP Setting
- Adjustable OCP/OVP/ Circuit Function
- Timer Function : Elapsed Time of Load on
- Cut Off Time (Auto Load Off Timer) : 1s to 999 g 59 min 59 s or Off
- External Channel Control/Monitoring Via Analog Control Connector
- Setup Memories : 100 sets
- 3.5 Inch TFT LCD Display

GயIMSTEK
Simply Reliable

Flexible Power Combinations, High-Speed and Versatile Load Simulations

The PEL-3000 Series, a single-channel, programmable D.C. electronic load with 0.01 mA current resolution and $16 \mathrm{~A} / \mu \mathrm{s}$ current Slew Rate, is very ideal for testing server power supply and SPS (Switching Power Supply) for commercial and industrial computers. For a heavy-duty device like cloud ecosystem running 24 -hour nonstop operations, a stable and high-power power supply, ranging from 350W to 1500 W , is required to maintain the normal operation of server, Hub, and the equipment of data storage and internet communications. Owing to the increasing demand of data transmission and large scale data storage of telecommunications systems, the infrastructure of internet communications is in the pace of rapid expansion. This has greatly boosted the market demand of telecommunications equipment powered by power supply of 2000W and above. The flexible power combination of PEL-3000 Series meets the test requirements of present high-power power supply. The PEL-3000H Series programmable DC Electronic load, which not only inherited functions and features from the PEL-3000 Series but providing three current ranges for all PEL-3000H Series and adding voltage monitor BNC terminals on the front panel. The PEL-3000H Series, a single-channel, programmable D.C. electronic load with 800 V and $0.84 \mathrm{~A} / \mu \mathrm{s}$ current Slew Rate, is ideal for the test of the high voltage devices such as the EV \& HEV in-vehicle chargers, DC/DC converters or high-voltage batteries. With respect to battery testing applications such as rechargeable battery for electrical tools, battery module and automobile battery, PEL-3000(H) Series has three stand-alone models to offer including $175 \mathrm{~W}, 350 \mathrm{~W}, 1050 \mathrm{~W}$ and Booster. By connecting Booster 2100 W units with master units, the maximum load capacity of the whole system can reach $9,450 \mathrm{~W}$. Hence, the PEL-3000(H) Series fulfills various power testing requirements including medium to low power or high-power power supply.

The PEL-3000(H) Series has seven operating modes and three operating functions. Among the seven operating modes, four of them are basic operating modes, including constant current, constant voltage, constant resistance, and constant power, and the other three are advanced operating modes including constant current + constant voltage, constant resistance + constant voltage, and constant power + constant voltage. Users must first select operating mode and then operating function based upon the test requirements. Static, Dynamic and Sequence operating functions can be applied to different testing conditions including a fixed load level, switching between two levels or switching among more than two levels. Sequence function is divided into Fast Sequence and Normal Sequence according to the test time of each step. Both Dynamic and Sequence are to assist users to simulate the genuine load change. For instance, PEL-3000(H) Series can simulate HEV current consumption to make sure that automobile battery can supply HEV with sufficient power need on the road. By so doing, manufacturers can elevate product quality and reliability.

The Soft Start function of the PEL-3000(H) Series can set current rise time for the moment PEL-3000(H) Series is turned on to reduce the abnormal situation of the voltage drop of power supply under test. The adjustable Under Voltage Protection (UVP), GO/NO GO voltage input monitoring function, current monitoring function and Timer Function to control load activation time can be jointly applied to the characteristic tests of battery bleeding to avoid battery damage during bleeding operation. Based upon the functionalities described above, the PEL-3000(H) Series can test a vast variety of power supply ranging from the fundamental static sink current to complex dynamic load simulations so as to enhance product quality and reliability.

The single unit D.C Electronic Load of PEL-3000(H) Series

The PEL-3000(H) Series is a high speed, single channel and programmable D.C. electronic load and its power, functionality, parallel combination and size are listed on the following chart :

MODEL	PEL-3021 (H)	PEL-3041 (H)	PEL-3111(H)	PEL-3211(H)
Power	175W	350w	1,050w	2,100W Booster
Function	Full-function Single Unit	Full-function Single Unit	Full-function Single Unit	No control panel, can not be operated alone
Parallel Combination	Parallel with same model, 5 units the maximum	Parallel with same model, 5 units the maximum	Parallel with same model, 5 units the maximum	Parallel with PEL-3111(H)
			Parallel with the maximum of four PEL-3211(H)s	
Size	Half Rack	Half Rack	Full Rack	Full Rack

Three PEL-3021 (H) in Parallel
PEL-3000(H) Series connects with loads via MIL 20-pin interface and connecting cables to designate a master to control other slave units in parallel. One PEL-3111(H) and four PEL-3211 (H) in parallel provide the maximum power of $9,450 \mathrm{~W}$.

One PEL-3111(H) connects with two PEL-3211(H) in Parallel
Parallel arrangement allows users to flexibly select and apply different power arrangement which enhances equipment utilization efficiency to save R\&D cost.

operating mode

The PEL-3000(H) series provides four fundamental operating modes and three add-on modes of CC, CR and CP separately combining with CV. Users can set different load condition under different operating modes such as setting operating range for load level, Current Slew Rate, input voltage and load current.

Under constant current mode, electronic load will sink the amount of current users has set. Different current settings via $C C$ mode allow users to test the voltage changes of $D C$ power supply which is called load regulation test.

C.V Mode

Under constant voltage mode, electronic load will sink sufficient current to regulate the voltage source to the set value. This mode allows users not only to test current limit function of power supply, but also to simulate battery operation in testing battery chargers.

The input voltage range has two levels - high and low. The load current operating range has three levels - high, medium and low current levels which possess different resolution to meet test requirements of different power product specifications.

C.R Mode

Under constant resistance mode, electronic load will sink load current, which is linearly direct proportion to input voltage. This mode can be utilized in testing voltage or the activation and current limit of power supply.

C.P Mode

Under constant power mode, electronic load will sink load current, which is indirect proportion to input voltage to reach preset constant power requirement. Hence, the changes of input voltage will have indirect proportion effect on current sinking so as to reach constant power control.

CC+CV Mode

CR+CV Mode

CP+CV Mode

CV mode can be selected under CC, CR or CP mode. When + CV mode function is turned on and electronic load sinks more current than the maximum current of power supply under test, electronic bad will auto matically swith to CV mode. It is because that the current sunk is the maximum current of power device. Therefore,
power supply will switch to CC mode and PEL-3000(H) will switch - CV mode to limit electronic load from sinking the total curren of power supply so as to prevent power supply under test from lamaging. Electronic load will cease operation once the voltag f DUT is lower than the set voltage under +CV mode.

THREE OPERATING FUNCTIONS

The PEL-3000(H) series, according to different test conditions, step or continuous changes, test speeds, and selectable modes, has three operating functions: Static, Dynamic and Sequence, which can be separately applied on a fixed load test; between two loads; or among more than two loads. Detailed descriptions of these functions are as follows:

Operation	Static	Dynamic
Function	Single fixed condition	Selection between two conditions
Operating Condition Selection	All modes	TTo conditions using same mode CR, CC,CP modes
Operating Modes		

Static function provides a fixed load to test output stability of power supply. Switching load value A to B will be manually perated. Under Dynamic function, two test conditions can be switched automatically and every set of parameter includes Level Timer and Slew Rate. Timer can be set to the fastest of $25 \mu \mathrm{~L}$ to accommodate response time of different power supply and assis esting power supply output status when load is unstable in order to enhance products' reliability and quality.

Sequence			
Fast		Normal	
Selection among more than two conditions		Selection from more than two conditions	
- Each condition must use same mode - Support CC or CR mode		- Each condition using different mode - All modes	
$\begin{aligned} & \text { - Level } \\ & \text { - Timer } \\ & \text { Slew Rate } \end{aligned}$	- Others...	$\begin{aligned} & \text { - Level } \\ & \text { - Timer } \\ & \text { Slew Rate } \end{aligned}$	- Others...
- 1 Sequence - 1,000 steps	- $25 \mathrm{ses} /$ step	- 10 Sequence - 1,000 steps	- 10 $\mathrm{\mu s} /$ step - Res. $10 \mu \mathrm{~s}$
- Trigger Out function		- Trigger Out function - Ramp function	

Static Mode

In Sequence function, waveforms of load current edited by Fast Sequence are steps and every step can reach the fastest of 25

Fast Sequence Diagram
Normal Sequence provides RAMP function to users, according to their requirements, to select between slope and step method under set time to sink current.

Dynamic Mode
to provide the high slew rate for electronic loads.

Normal Sequence Diagram
By applying a complete sequence editing function, users can control electronic load without using a computer or writing a program so as to save cost and time of R\&D.

BNC connectors on the front panel

TRIG OUT $=\mathbf{O N}$

析

The front panel of PEL-3000(H), via BNC connectors provides two output signals, which are Trigger Signal and IMON. Under Dynamic or Sequence function, the moment the load current setting is changed BNC on the front panel will output a 4.5 V and $2 \mu \mathrm{~s}$ pulse voltage. This trigger signal can be set to open or close for every step. Users can use trigger signal to synchronize other devices inside the system

Current monitoring signals, using a BNC connector to compare with the full scale of real load current, output $0 \sim \operatorname{VV}(0 \sim 10 \mathrm{~V}$ for PEL-3000H) at high and low current levels and $0 \sim 0.1 \mathrm{~V}(0 \sim 1 \mathrm{~V}$ for PEL-3000H) at medium current level. Therefore, users can monitor load current change without using current probe to save cost.

VON VOLTAGE AND VON LATCH FUNCTION

Von Latch = OFF
Von Voltage is the threshold voltage for electronic load to activate or terminate sinking current. When Von Latch is set to off, electronic load operation will be activated if input voltage is higher than Von Voltage and electronic load operation will be terminated if input voltage is lower than Von Voltage. When Von

SOFT START

Three different load waveforms of Soft Start Time Soft Start regulates the time of current rising from 0 to preset value during the moment load is activated. This function is to revent voltage from dropping due to the fast transient rising er forent sudd voltage rill in in eresful damaged DUT.

Von Latch $=\mathbf{O N}$
Latch is set to on, electronic load operation will be activated finput voltage is higher than Von Voltage and will continue peration even input voltage is lower than Von Voltage. Von Voltage function can test the transient maximum current capability provided by power supply.

PROTECTION MODES

Finctions Promection	OCP	ovp	OPP	отр	UVP	RVP
Adjustale Thresholds	\checkmark	\checkmark	\checkmark	Fixe	\checkmark	N/A
Load Off	\checkmark	\checkmark	\checkmark	N/A	\checkmark	Fixed
Limit Function	\checkmark	N/A	\checkmark	N/A	N/A	N/A

The PEL-3000(H) Series provides many protective functions including over current protection(OCP), over voltage protection (OVP), over power protection(OPP), over temperature protection (OTP) and under voltage protection(UVP). Except for OTP, all thresholds of protective functions are adjustable. When protective function is activated, electronic load will send out warning signal and terminate operation. Other than protective functions, Limit function can also be utilized to maintain electronic load in operation at a preset value. The related settings and selections are as above: Take UVP as an example. In battery bleeding tests, electronic load will cease operation if battery voltage is lower than the set protective threshold value in order to prevent battery from over bleeding.

The PEL-3000(H) Series provides the external analog channel con function, which allows users to connect J1 and J2 MIL 20 pin tandard connectors on the rear panel to input voltage or to onnect resistance to control electronic load operation. Input voltage is limited to the range of $0 \sim 10 \mathrm{~V}$; connecting resistance
is limited to the range of $0 \Omega \sim 10 \mathrm{k} \Omega$; and related to load level are $0 \sim 100 \%$. For instance, when operating PEL-3021under CC mode and 35 A , external input voltage is 1 V and sink current is 3.5 A . Users can integrate this function into test system and utilize signals generated from the test system to control PEL-3000(H) Series.
batt test automation

BATT Test Automation Editing

Waveform of TEST Result

Sample of Data Log
he built-in BATT Test Automation of PEL-3000(H) provides battery discharge can be set respectively. For instance, set the input discharge applications with more flexible discharge stop time setting as well as rise and fall slew Rate for discharge current settings. Under CP, CC or CR mode, the conditions for stop

OCP TEST AUTOMATION

OCP test Automation for DUT(Power Supply), provide users with high resolution OCP measurement values to verify DUT's OCP activation point. It also provides users with measurement results so as to help them determine whether DUT's actual OCP activation point meets the regulations. It can test the value of OCP by setting load current increment from start current to stop current. OCP's activation point can be accurately measured.
volage for stop discharge current, the execution time for dischar current or total discharge current*time (AH) to satisfy the verification of battery capability.

OPP TEST AUTOMATION

OPP test Automation for DUT(Power Supply), provide users with high resolution OPP measurement values to verify DUT's OPP activation point. It also provides users with measurement results so as to help them determine whether DUT's actual OPP activation point meets the regulations. It can test the value of OPP by setting power increment from start power to stop power. OPP's activation point can be accurately measured.

0.000 v 0.00 w

0.000 A :00:05 Elapsed Time

Elapsed Time

The PEL-3000(H) Series provides count time and cut off time functions. The display screen will show present activation time when electronic load is activated. When electronic load operation is terminated count time will stop and the total operation time will be shown on the display screen.
The activation time of cut off time can be set to the maximum length of 999 h 59 min 59 s . When electronic load is activated
0.000 v 0.00 w

Cut Off Time
Voltage at Cut Off Time

PEL-3111(H) can be used as either master or Slave. PEL-3111(H) can also be connected in parallel with PEL-3211 (H) (Booster unit). Can also be connected in paralle with PEL-3211(H) (Booster un
Customers, based upon their DUT requirements, can collocate Customers, based upon their DUT requirements, can collocate
different models to meet their power requirements. The system collocation connection and terminals are all copper bar structure. System Rack is also available. When the Master/Slave control mode is selected, Master will automatically calculate current sunk as soon as load has been activated. The system will automatically
distribute current to each Master/Slave unit. For Master/Slave parallel collocation, users only enter settings and edit programs on Master. Logically speaking, Master/Slave parallel collocation can be regarded as one single load unit. Therefore, this collocation can safely provide load capacity with actual current and power in the respective level. Parallel collocation can also meet different current and power requirements.

RACK MODEL COLLOCATION AND RATED POWER

dd	PEL-3322	PEL-3533	PEL-3744	PEL-3955
Watt	3150w	5550w	I3S0W	9450w
Current	0.638 A	0-1050A	0.1470 A	0.1800 A
Colloatio	PEL.3111+PEL.3211	Pet.3111+et. 3211×2	Pel.311+PEL-3211 $\times 3$	Pl.3111+epl. 3111×4

Moded	PEL-3322H	PEL-3533H	PEL-3744H	PEL-3955H
Watt	3150w	50w	7350w	945
Current	157.5A	0.262 .5 A	0.367 .5 A	0.472.5A

Moded	PEL-3212	PEL-3323	PEL-3424	PEL-3535	Moded	PEL-3212H	PEL-3323H	PEL-3424H	PEL-3535H
Watt	2100w	ow	4200w	5250w	Watt	2100%	3150w	4200w	5250
Curent	0-420A	0.630 A	0.880 A	0-105	Current	0-10	0.15	0.22	0.262 .5 A
Collocation	¢t-311 $\times 2$	PEL-311 $\times 3$	Pel-311 $\times 4$	Pt. 3111×5	Collocation	Pel.311 $\mathrm{H} \times 2$	PEL-311 14×3	PEL-311 $\mathrm{H} \times 4$	pt.3)11 1

Connection Diagram of Application
Some large power supply system has a stable load of 3 kW under the normal duty operation and its dynamic load of transient peak will reach 9 kW . This system uses PEL-3955 to simulate load patterns so as to assist engineers in analyzing and testing DUT. The procedures:

Example the Waveform of Load

* Select load mode as CC or CP
* Select appropriate operational level: Both $1 \& V$ range in High * Select operational mode as Dynamic mode or Sequence * Set related load arguments sequentially Levell, Level2, Slew Rate and Duration Time
If Sequence is selected, each segment's load condition must be set *Ecercute load operation

high power model augmentation and parallel

To meet customers' larger sink current, larger power and flexible application of electronic load requirements, the design concept of the PEL-3000 series not only meets the requirement of low power products with high resolution, but also supports the measurement of high power and large current. Single unit of the series can satisfy various load conditions. For higher power
requirements, users can consider purchasing additional Slave control system to collocate the system in parallel through system connection. For operating PEL-3955(1.5~150V/1890A/9.45kW) six units of PEL-3955 are arranged in parallel to reach load capacity of 56.7 kW . Bus bar connection can guarantee the safety capacity of 56.7 kW . Bus bar connection can g
of large power and large current operations.

Waveform of power load

To ensure each Rack can execute synchronized parallel load To ensure each Rack can execute synchronized paraller load
operation and to simulate the real dynamic load operation. The orange curve of the above diagram shows PEL-3955 executing dynamic synchronized control under external parallel. Comparing with other electronic loads in parallel, the PEL-3000 series does not delay. PEL-3955, with its superior performance and distinct characteristics, has been widely used as test and verification
equipment in the power test field. In addition to single unit electronic load of 1 kW , larger power models have power outputs including $3 \mathrm{~kW} / 5 \mathrm{~kW} / 7 \mathrm{~kW} / 9 \mathrm{~kW} / 18 \mathrm{~kW} / 27 \mathrm{~kW} / 36 \mathrm{~kW} / 54 \mathrm{~kW}$, whic provide the most important test and verification platform for R\&D and QA in the fields of server power system, communications power system, hybrid power pack, solar power module.

PEL-3000 Series

1. ON / STBY

2. LCD Display
3. Function Keys
4. Operation Key
5. Front Panel Input Terminals
6. I MON, TRIG OUT Terminals
7. Rear Panel Inputs Terminals
8. Frame Control Ports, J1, |2
9. GPIB/LAN
10. RS232C Port
11. USB Port

Note: *1. Full scale of H range
*2. Vin: input terminal voltage of electronic load
*3. M range applies to the full scale of H range
$* 4$ Siemens $[S]=$ Input current $[A] / /$ Input voltage $[\mathrm{V}]=1 /$ resistance $[\Omega]$
$* 5$ Converted value t the input current A.
*5. Converred value at the input current. At the input current. It is not applied for the condition of the parallel operatio
*6. set $=\operatorname{Vin} /$ Rset
*7. At the sensing point during remote sensing under the operating range of the input voltage. It is also applied for the condition of the
parallel operation.
$* 8$. It is not applied for
*9. Time to reach from 10% to 90% when the current is varied from 2% to 100% (20% to 100% in M range) of the rated current.

Specifications subject to change without notice. PEL-3000/3000HGDIB

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Hand Tools category:
Click to view products by GW INSTEK manufacturer:
Other Similar products are found below :
58284-1 662908-1 68764-0001 690619-6 D20419-189 7-354778-7 768531-1 821903-5 822253-1 854183-1 854358-1 992258-1 1-21046-3 1-22278-0 $\frac{1-22278-2}{} \underline{1-24954-2}$ 125529-5 126513-1 1-305579-8 1320846 -1 $1338618-1$ 1338968-2 1-354779-0 1-354779-2 1-354779-4 1424443-1 1424289-1 1424444-1 MS24256A16 1-525442-0 1532195-2 $\underline{1538773-2} \underline{1-59681-8} \underline{1-59907-5}$ 1-692134-3 1725760-1 HT-920A-124-HTELE-RPL-KIT 1976923-1 1976969-1 2063794-1 2063795-1 2-21002-1 2-21002-3 2-21002-4 2-21002-7 2-21002-9 2-210040 229399-2 229707-1 911737-2

