

Features

Output current is 1A

Range of operation input voltage: 15V

Line regulation: 0.03%/V (typ.)

• Standby current: 2mA (typ.)

• Load regulation: 0.2%/A (typ.)

• Environment Temperature: -20°C~85°C

Applications

 Power Management for Computer Mother Board, Graphic Card

LCD Monitor and LCD TV

DVD Decode Board

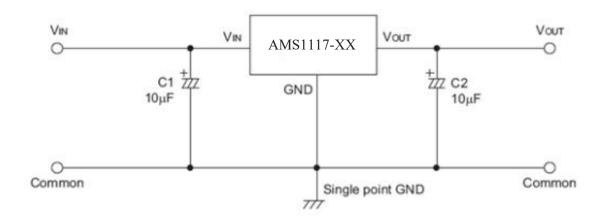
ADSL Modem

Post Regulators for Switching Supplies

General Description

AMS1117 is a series of low dropout three-terminal regulators with a dropout of 1.3V at 1A load current.

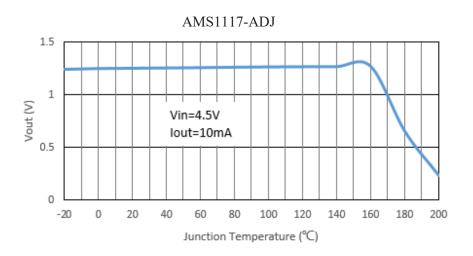
AMS1117 features a very low standby current 2mA compared to 5mA of competitor.


Other than a fixed version, Vout = 1.2V, 1.5V, 1.8V, 2.5V, 2.85V, 3.3V, and 5V, AMS117 has an adjustable version, which can provide an output voltage from 1.25 to 12V with

only two external resistors.

AMS1117 offers thermal shut down function, to assure the stability of chip and power system. And it uses trimming technique to guarantee output voltage accuracy within 2%. Other output voltage accuracy can be customized on demand, such as 1%.

AMS1117 is available in SOT-223, TO-252 power package.


Typical Application

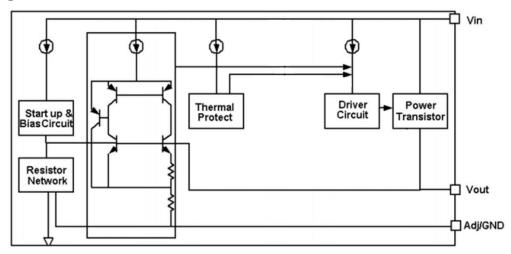
Application circuit of AMS1117 fixed version

Ver2.2 Nov.17.2020

Typical Electrical Characteristic

Selection Table

Marking	Part No.	Output Voltage	Package
	XX=12	1.2V	
	XX=15	1.5V	
1117	XX=18	1.8V	
XX YYWW	XX=28	2.85V	SOT-223
	XX=25	2.5V	TO-252
	XX=33	3.3V	
	XX=50	5.0V	
	XX=ADJ	Adj	


Ordering Information

Marking	Designator	Description	
1117	1117	Product code	
XX YYWW	XX	Output Voltage(1.2~12.0V)	
AA 1 1 VV VV	YYWW	DATE CODE	

Note: "XX" stands for output voltages. Other voltages can be specially customized

Block Diagram

Pin Configuration

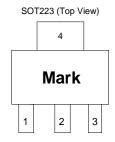


Table1: AMS1117 series (SOT223 PKG)

PIN NO.	PIN NAME	FUNCTION
1	VSS/ADJ	VSS/ADJ pin
2	VOUT	Output voltage pin
3	VIN	Input voltage pin
4	VOUT	Output voltage pin

TO252 (Top View)

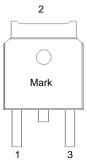


Table2: AMS1117 series (TO252 PKG)

PIN NO.	PIN NAME	FUNCTION
1	VSS/ADJ	VSS/ADJ pin
2	VOUT	Output voltage pin
3	VIN	Input voltage pin

24

32

5

mV

mV

Absolute Maximum Ratings

Max Input Voltage ·····	··18V
Max Operating Junction Temperature(Tj)	150°C
Ambient Temperature(Ta) · · · · · · · · · · · · · · · · · · ·	··-20°C∼ 85°C
Storage Temperature(Ts)	40°C~150°C
Lead Temperature & Time	260°C 10S
Caution: Exceed these limits to damage to the device. Exposure to absolute maximum rating cond	itions may affect

device reliability.

Electrical Characteristics

 $\triangle Vout$

Line

regulation

T_A=25°C, unless otherwise noted.

Symbol	Parameter	Conditions	Min Typ Max		Unit	
Vin	Input voltage		15 18		V	
Vref	Reference	AMS1117-Adj	1.225 1.25 1.3		1.275	V
	voltage	10mA≲lout≲1A , Vin=3.25V				
		AMS1117-1.2V	1.176	1.2	1.224	V
		0≲lout≲1A , Vin=2.7V				
		AMS1117-1.5V	1.47	1.5	1.53	V
		0≲lout≲1A , Vin=3.0V				
		AMS1117-1.8V	1.764	1.8	1.836	V
Vout	Output voltage	0≲lout≲1A , Vin=3.3V				
		AMS1117-2.5V	2.45	2.5	2.55	V
		0≲lout≲1A , Vin=4.0V				
		AMS1117-2.85V	2.793	2.85	2.907	V
		0≤lout≤1A , Vin=4.35V				
		AMS1117-3.3V	3.234	3.3	3.366	V
		0≲lout≲1A , Vin=4.8V				
		AMS1117-5.0V	4.9	5	5.1	V
		0≲lout≲1A , Vin=6.5V				
		AMS1117-1.2V		4	19	mV
		lout=10mA, 2.7V≤Vin≤10V				
		AMS1117-1.5V		5	26	mV

lout=10mA, $3.0V \le Vin \le 10V$

lout=10mA, 2.75V≤Vin≤12V

lout=10mA, 3.3V≤Vin≤12V

AMS1117-ADJ

AMS1117-1.8V

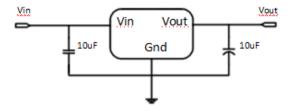
	AMS1117-2.5V	8	41	mV
	lout=10mA, 4.0V≪Vin≪12V			
	AMS1117-2.85V	8	46	mV
	lout=10mA, 4.35V≪Vin≪12V			
	AMS1117-3.3V	9	49	mV
	lout=10mA, 4.8V≪Vin≤12V			
	AMS1117-5.0V	10	56	mV
	lout=10mA, 6.5V≤Vin≤12V			

		AMS1117-1.2V	3	8	mV
		Vin =2.7V, 10mA≤lout≤1A			
		AMS1117-1.5V	3	8	mV
		Vin =3.0V, 10mA≤lout≤1A			
		AMS1117-ADJ	4	8	mV
		Vin =2.75V, 10mA≤lout≤1A			
△Vout	Load	AMS1117-1.8V	4	12	mV
	regulation	Vin =3.3V, 10mA≤lout≤1A			
		AMS1117-2.5V	5	16	mV
		Vin =4.0V, 10mA≤lout≤1A			
		AMS1117-2.85V	6	20	mV
		Vin =4.35V, 10mA≤lout≤1A			
		AMS1117-3.3	7	24	mV
		Vin =4.8V, 10mA≤lout≤1A			
		AMS1117-5.0	10	36	mV
		Vin =6.5V, 10mA≤lout≤1A			
Vdrop	Dropout voltage	lout =100mA	1.15	1.3	V
		lout=1A	1.3	1.5	V
Imin	Minimum load	AMS1117-ADJ	2	10	mA
	current				
		AMS1117-1.2V,Vin=10V	2	5	mA
		AMS1117-1.5V,Vin=10V	2	5	mA
Iq	Quiescent	AMS1117-1.8V,Vin=12V	2	5	mA
	Current	AMS1117-2.5V,Vin=12V	2	5	mA
		AMS1117-2.85V,Vin=12V	2	5	mA
		AMS1117-3.3V,Vin=12V	2	5	mA
		AMS1117-5.0V,Vin=12V	2	5	mA
ladj	Adjust pin	AMS1117-ADJ	55	120	uA
	current	Vin=5V,10mA≤lout≤1A			
Ichange	ladj change	AMS1117-ADJ	0.2	10	uA

		Vin=5V,10mA≤lout≤1A		
	Thermal	Junction Temperature	+200	°C
	Shutdown			C
OTP	Thermal	Junction Temperature	+30	
	Shutdown			°C
	Hysteresis			
	Temperature	Vin=4.5V, lout=10mA	30	
∆ Vout	coefficient	VOUT=3.3V		mV
		20℃ ≤Ta≤120 ℃		
θ	Thermal	SOT-223	20	°C/W
θ JC	resistance	TO-252	10	C/VV

Note1: All test are conducted under ambient temperature 25° C and within a short period of time 20ms Note2: Load current smaller than minimum load current of AMS1117-ADJ will lead to unstable or oscillation output.

Detailed Description

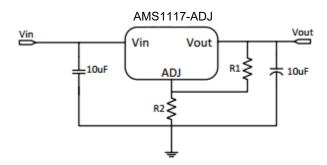

AMS1117 is a series of low dropout voltage, three terminal regulators. Its application circuit is very simple: the fixed version only needs two capacitors and the adjustable version only needs two resistors and two capacitors to work. It is composed of some modules including start-up circuit, bias circuit, bandgap, thermal shutdown, power transistors and its driver circuit and so on.

The thermal shut down modules can assure chip and its application system working safety when the junction temperature is larger than 140°C.

The bandgap module provides stable reference voltage, whose temperature coefficient is compensated by careful design considerations. The temperature coefficient is under 100 ppm/°C. And the accuracy of output voltage is guaranteed by trimming technique.

Typical Application

AMS1117 has an adjustable version and six fixed versions (1.2V, 1.5V,1.8V, 2.5V, 2.85V , 3.3V and 5V) **Fixed Output Voltage Version**



Application circuit of AMS1117 fixed version

- 1) Recommend using 10uF tan capacitor as bypass capacitor (C1) for all application circuit.
- 2) Recommend using 10uF tan capacitor to assure circuit stability.

Adjustable Output Voltage Version

Application Circuit of AMS1117-ADJ

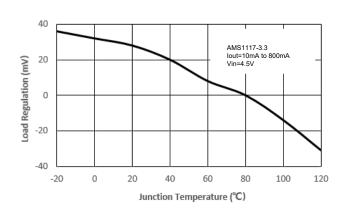
The output voltage of adjustable version follows the equation: Vout= $1.25 \times (1+R2/R1)+IAdj \times R2$. We can ignore IAdj because IAdj (about 50uA) is much less than the current of R1 (about 2~10mA).

- 1) To meet the minimum load current (>10mA) requirement, R1 is recommended to be 125ohm or lower. As AMS1117-ADJ can keep itself stable at load current about 2mA, R1 is not allowed to be higher than 625ohm.
- 2) Using a bypass capacitor (C_{ADJ}) between the ADJ pin and ground can improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. The impedance of C_{ADJ} should be less than R1 to prevent ripple from being amplified. As R1 is normally in the range of $100\Omega\sim500\Omega$, the value of C_{ADJ} should satisfy this equation: $1/(2 \pi \times f_{fipple} \times C_{ADJ}) < R1$.

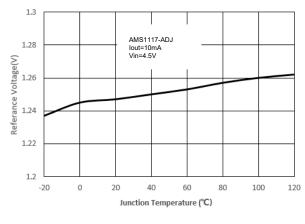
Thermal Considerations

We have to take heat dissipation into great consideration when output current or differential voltage of input and output voltage is large. Because in such cases, the power dissipation consumed by AMS1117 is very large. AMS1117 series uses SOT- 223 package type and its thermal resistance is about 20°C/W. And the copper area of application board can affect the total thermal resistance. If copper area is 5cm*5cm (two sides), the resistance is about 30°C/W. So the total thermal resistance is about 20°C/W + 30°C/W. We can decrease total thermal resistance by increasing copper area in application board. When there is no good heat dissipation copper are in PCB, the total thermal resistance will be as high as 120°C/W, then the power dissipation of AMS1117 could allow on itself is less than 1W. And furthermore, AMS1117 will work at junction temperature higher than 125°C under such condition and no lifetime is guaranteed.

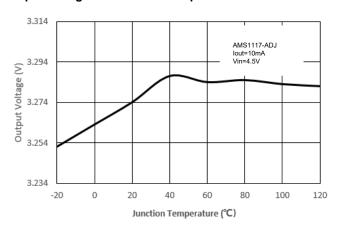
Ver2.2 7 Nov.17.2020

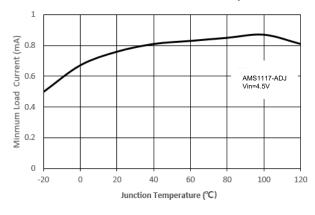

Typical Performance Characteristics

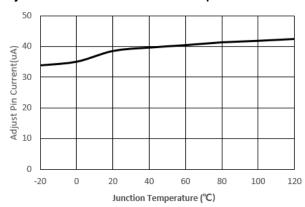
T_A=25°C, unless otherwise noted

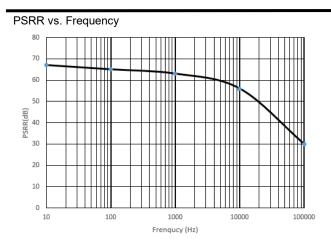

Line Regulation vs. Junction Temperature

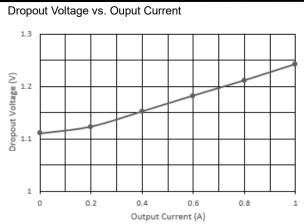
10 AMS1117-3.3 lout=10mA to 800mA Vin=4.5V O -20 0 20 40 60 80 100 120 Junction Temperature (°C)


Load Regulation vs. Junction Temperature

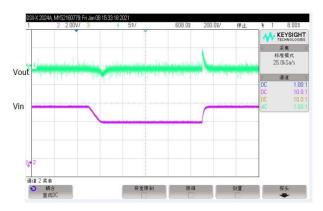

Reference Voltage vs. Junction Temperature

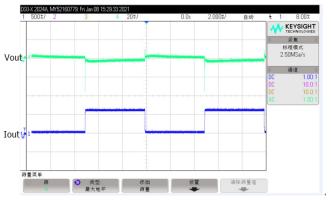

Output Voltage vs. Junction Temperature


Minimum Load Current vs. Junction Temperature

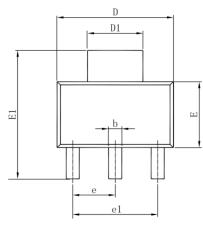


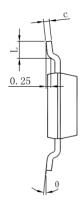
Adjust Pin Current vs. Junction Temperature

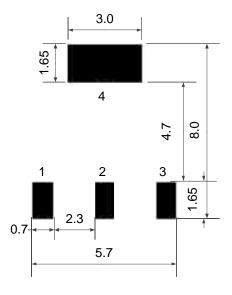


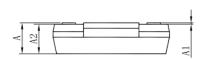


Line Transient Response


Load Transient Response

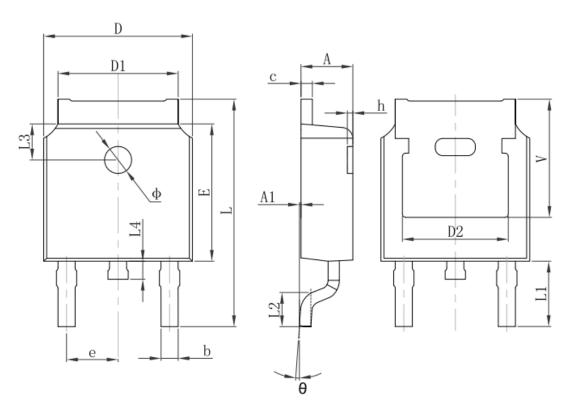





Package Information

SOT-223 PACKAGE OUTLINE DIMENSIONS

PCB Board


C	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.520	1.800	0.060	0.071
A1	0.000	0.100	0.000	0.004
A2	1.500	1.700	0.059	0.067
b	0.660	0.820	0.026	0.032
С	0.250	0.350	0.010	0.014
D	6.200	6.400	0.244	0.252
D1	2.900	3.100	0.114	0.122
Ш	3.300	3.700	0.130	0.146
E1	6.830	7.070	0.269	0.278
е	2.300	(BSC)	0.091(BSC)	
e1	4.500	4.700	0.177	0.185
L	0.900	1.150	0.035	0.045
θ	0°	10°	0°	10°

Ver2.2 Nov.17.2020

1A Bipolar Linear Regulator

TO-252-2L PACKAGE OUTLINE DIMENSIONS

Cumb al	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	2.200	2.400	0.087	0.094
A1	0.000	0.127	0.000	0.005
b	0.660	0.860	0.026	0.034
С	0.460	0.580	0.018	0.023
D	6.500	6.700	0.256	0.264
D1	5.100	5.460	0.201	0.215
D2	4.830	REF.	0.190	REF.
E	6.000	6.200	0.236	0.244
е	2.186	2.386	0.086	0.094
L	9.800	10.400	0.386	0.409
L1	2.900 REF.		0.114	REF.
L2	1.400	1.700	0.055	0.067
L3	1.600	REF.	0.063	REF.
L4	0.600	1.000	0.024	0.039
Ф	1.100	1.300	0.043	0.051
θ	0°	8°	0°	8°
h	0.000	0.300	0.000	0.012
V	5.350	REF.	0.211 REF.	

Ver2.2 Nov.17.2020

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by HEERMICR manufacturer:

Other Similar products are found below:

LV5684PVD-XH MCDTSA6-2R L7815ACV-DG LV56801P-E UA7805CKC 714954EB ZMR500QFTA BA033LBSG2-TR

NCV78M05ABDTRKG LV5680P-E L79M05T-E L78LR05D-MA-E NCV317MBTG NTE7227 MP2018GZD-33-P MP2018GZD-5-P

LV5680NPVC-XH ZTS6538SE UA78L09CLP UA78L09CLPR CAT6221-PPTD-GT3 MC78M09CDTRK NCV51190MNTAG

BL1118CS8TR1833 BL8563CKETR18 BL8077CKETR33 BL9153-33CC3TR BL9161G-15BADRN BL9161G-28BADRN

BRC07530MMC CJ7815B-TFN-ARG LM317C GM7333K GM7350K XC6206P332MR HT7533 LM7912S/TR LT1764S/TR LM7805T

LM338T LM1117IMP-3.3/TR HT1117AM-3.3 HT7550S AMS1117-3.3 HT7150S 78L12 HT7550 HT7533-1 HXY6206I-2.5 HT7133