

Features

- High input voltage (up to 40V)
- Low Power Consumption: 1.4µA (Typ)
- Maximum Output Current: 250mA
- Voltage drop:350mV@100mA

Applications

- Battery-powered equipment
- Communication equipment

- Good Transient Response
- Output voltage accuracy: tolerance $\pm 2\%$
- SOT23-3 and SOT89 package
- PSRR:80dB@1KHz
- Audio/Video equipment
- Home Automation

General Description

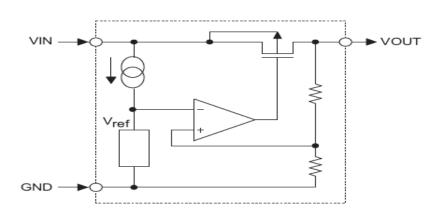
The HE2240 ultra-low quiescent current regulator features low dropout voltage and low current in the standby mode. With less than 1.4μ A quiescent current at no load, the HE2240 is ideally suited for standby micro-control-unit systems, especially for always-on applications like E-meters, fire alarms, smoke detectors and other battery operated systems. The HE2240 retains all of the features that are common to low dropout regulators including a low dropout PMOS pass device, short circuit protection, and thermal shutdown. The device is available in fixed output voltages of 3.0, 3.3, 3.6, 4.0 and 5.0V.The device features integrated short-circuit and thermal shutdown protection. Although designed primarily as fixed voltage regulators, the device can be used with external components to obtain variable voltages.

Selection Table

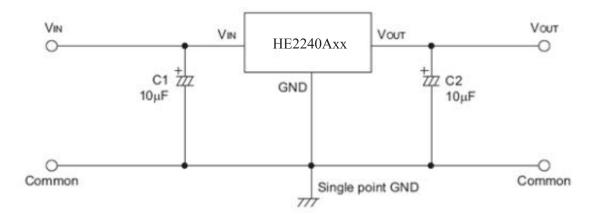
Part No.	Output Voltage	Package	Marking
HE2240Axx	3.0V		
HE2240Axx	3.3V	SOT89	AFXX
HE2240Axx	3.6V	SOT23-3L	AZXX
HE2240Axx	4.0V		
HE2240Axx	5.0V		

Note: "XX" stands for output voltages.

SOT23-3 & SOT89 packages will add a "B" mark at the end of the marking.

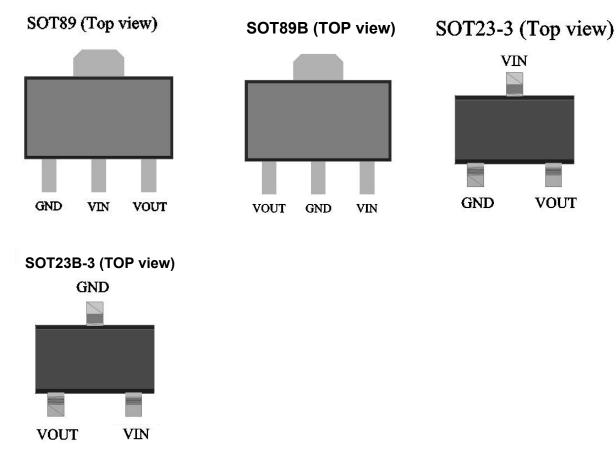


Order Information


HE2240A12345

Designator	Symbol	Description
12	Integer	Output Voltage(3.0~5.0V)
3	Н	Standard
	Р	Package:SOT89-3
(4)	PB	Package:SOT89B-3
	М	Package:SOT23-3
	MB	Package:SOT23B-3
5	R	RoHS / Pb Free
	G	Halogen Free

Block Diagram



Application Circuits

Pin Assignment

Absolute Maximum Ratings

Supply Voltage-0.3V to 40VStorage Temperature-50 $^{\circ}$ C to 125 $^{\circ}$ COperating Temperature-40 $^{\circ}$ C to 85 $^{\circ}$ C

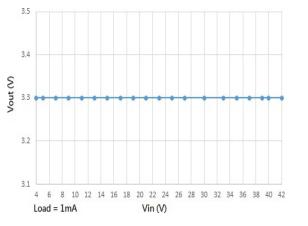
Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

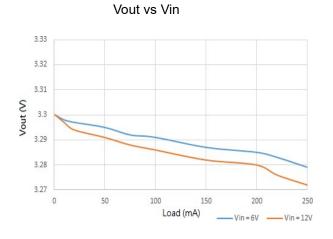
Thermal Information

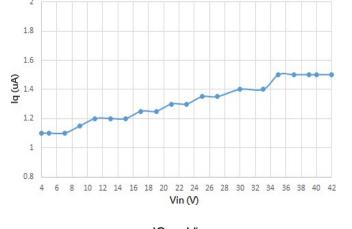
Symbol	Parameter	Package	Max.	Unit
θJA	Thermal Resistance (Junction to Ambient) (Assume no ambient	SOT23	500	°C/W
∪ JA	airflow, no heat sink)	SOT89	200	°C/W
PD	Power Dissipation	SOT23	0.20	W
ΓD		SOT89	0.50	W

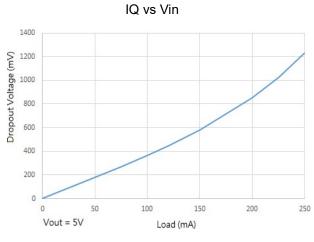
Note: P_{D} is measured at Ta= 25 $^\circ\!\mathrm{C}$

Electrical Characteristics

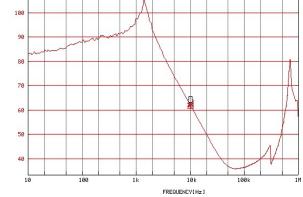

(Test Conditions:VIN=12V, VOUT=Vset,CIN=10uF, COUT=10uF,TA=25°C, unless otherwise specified.)

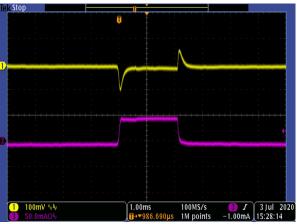

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input Voltage	Vin		3.0	_	40	V
Supply Current	lq	Vin=12V Iload=0mA	_	1.4	3.0	uA
Output Voltage HE2240	Vout2	Vin=12V Iout=10mA	Vset*0.98	Vset	Vset*1.02	V
Maximum Output Current	Ιουτ (Max)	_	250		_	mA
	Vdrop	Іоυт =250mA	—	900	—	
	Vout=3.0V	Іоυт=100mA	—	380	—	
Dropout Voltage	Vdrop	Іоυт =250mA	—	820	_	mV
	Vout=3.3V	Іоυт =100mA	—	350	_	IIIV
	Vdrop	Іоυт =250mA	—	800	_	
	Vout=5.0V	Іоυт =100mA	—	320		
Line Regulation	ΔVουτ / ΔVin•Vout	Iou⊤=10mA (Vset+1.0v)≦Vin≦38V	_	0.1	_	%/V
Load Regulation ΔVout		Vin=10V 1mA≦Iout≦100mA	_	30	_	mV
Enable pin pull high current	len				0.3	uA
EN Threshold	Vil	Shutdown	—	_	0.4	V
Voltage	Vін	Start-Up	0.9	_	—	V
Power Supply Rejection Rate		VIN=12V VOUT=3.3V f=1KHz,IOUT= 10mA	_	80	_	dB
	PSRR	Vı№=12V Vо∪т=3.3V f=10KHz,Іо∪т= 10mA	_	60	_	dB
Short Current	Ishort	RL=1Ω		42	_	mA
Output Noise Voltage	e no	Ιουτ=50mA BW = 300Hz~50kHz	_	50	_	uVrмs
Output Voltage Temperature Coefficient	ΔVουτ/ ΔΤ•Vουτ	louτ=10mA	_	100	—	ppm/℃



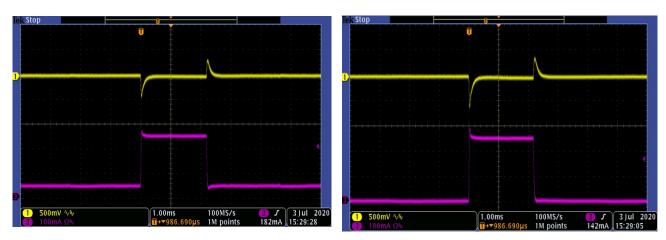

Typical Characteristics

(VIN=12V, IOUT=1mA, VOUT=3.3V, CIN=COUT=1uF, TJ=25°C, unless otherwise specified)

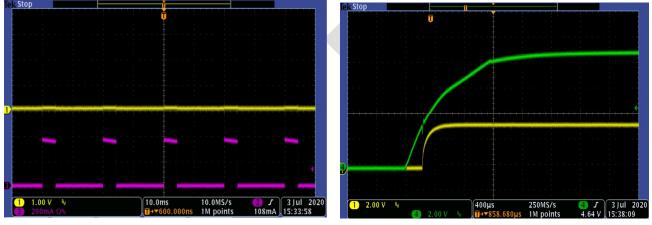



Vout vs Load

PSRR vs. Frequency (VIN=9V, VOUT=3.3V)


Dropout vs Load

Vout Load Transient (0 to 50mA)


GAIN[dB]

Vout Load Transient (50 to 250mA)

Vout Load Transient (1 to 250mA)

Vout Short to GND

Vin Start up

Layout Consideration

By placing input and output capacitors on the same side of the PCB as the LDO, and placing them as close as is practical to the package can achieve the best performance. The ground connections for input and output capacitors must be back to the HE2240 ground pin using as wide and as short of a copper trace as is practical.Connections using long trace lengths, narrow trace widths, and/or connections through via must be avoided. These add parasitic inductances and resistance that results in worse performance especially during transient conditions.

Application Guideline

Input Capacitor

A 10 μ F ceramic capacitor is recommended to connect between V_{DD} and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both VIN and GND.

Output Capacitor

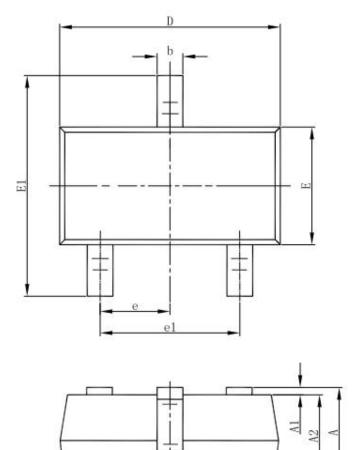
An output capacitor is required for the stability of the LDO. The recommended output capacitance is 10μ F, ceramic capacitor is recommended, and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to VOUT and GND pins.

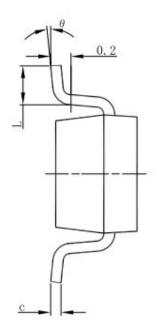
Dropout Voltage

The dropout voltage refers to the voltage difference between the VIN and VOUT pins while operating at specific output current. The dropout voltage VDROP also can be expressed as the voltage drop on the pass-FET at specific output current (IRATED) while the pass-FET is fully operating at ohmic region and the pass-FET can be characterized as resistance RDS(ON). Thus the dropout voltage can bedefined as (VDROP = VIN - VOUT = RDS(ON) x IRATED). Fornormal operation, the suggested LDO operating range is (VIN > VOUT + VDROP) for good transient response and PSRR ability. Vice versa, while operating at the ohmic region will degrade the performance severely.

Thermal Application

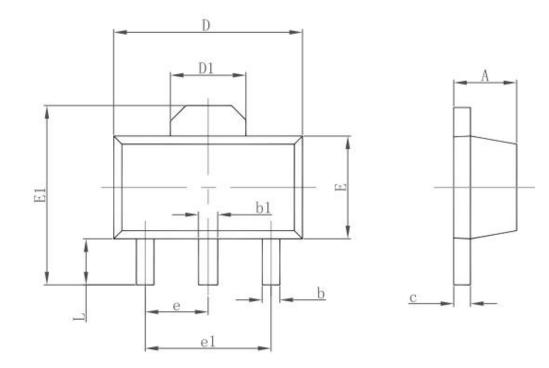
For continuous operation, do not exceed the absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated as below: TA=25°C, PCB,


The max PD= (125°C - 25°C) / (Thermal Resistance °C/W)


Power dissipation (PD) is equal to the product of the output current and the voltage drop across the output pass element, as shown in the equation below:

 $PD = (VIN - VOUT) \times IOUT$

Package Information 3-pin SOT23-3 Outline Dimensions



Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037	(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

3-pin SOT89 Outline Dimensions

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
A	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550	1.550 REF.		0.061 REF.	
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP.		0.060	TYP.	
e1	3.000 TYP.		0.118	TYP.	
L	0.900	1.200	0.035	0.047	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by HEERMICR manufacturer:

Other Similar products are found below :

LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG PQ3DZ53U LV56801P-E TLE42794G L78L05CZ/ISX L78LR05DL-MA-E 636416C 714954EB ZMR500QFTA LV5680P-E L78M15CV-DG L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 MP2018GZD-33-P MP2018GZD-5-P LV5680NPVC-XH LT1054CN8 MP2018GZD-5-Z MP2018GZD-33-Z AT55EL50ESE APL5934DKAI-TRG 78L05U 78L05 CL9193A15L5M CL9036A30F4M CL9036A18F4M CL9036A25F4M CL9036A28F4M CL9036A33F4M CL9906A18F4N CL9906A30F4N CL9908A30F4M CL9908A33F4M CL9908A18F4M CL9908A28F4M TL431ACM/TR TL431AIM/TR LM78L05ACM/TR HT7812ARMZ HT7805ARMZ HT317LRHZ HXY6206I-3.0 HXY6206I-3.3 XC6206P252MR XC6206P282MR