

Features

- Low power consumption
- Low temperature coefficient
- Built-in hysteresis characteristic
- High input voltage (up to 8V)
 - Output voltage accuracy: ±2%@VDET≥2.5mV ±50mV@VDET<2.5mV
- SOT23-3 and SOT23 package

Applications

- Battery checkers
- Level selectors
- Power failure detectors
- Microcomputer reset
- Battery memorybackup
- Non-volatile RAM signal storage protectors

General Description

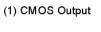
The HE61C series devices are a set of three terminal low power voltage detectors implemented in CMOS technology. Each voltage detector in the series detects a particular fixed voltage ranging from 0.9V to 5.0V. The voltage detectors consist of a high-precision and low power consumption standard voltage source as well as a comparator,

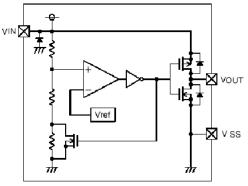
hysteresis circuit, and an output driver (CMOS inverter or NMOS open drain). CMOS technology ensures low power consumption.

Although designed primarily as fixed voltage detectors, these devices can be used with external components to detect user specified threshold voltages.

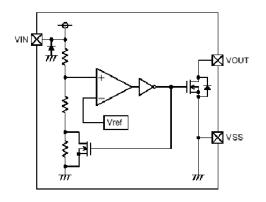
Part No.	Det. Voltage	Hys. Width	Output	Tolerance	Package
HE61CC0902MR	0.9V	4%	CMOS	$\pm 50 \text{mV}$	
HE61CN0902MR	0.9V	4%	NMOS	$\pm 50 \text{mV}$	
HE61CC1002MR	1.0V	4%	CMOS	$\pm 50 \text{mV}$	
HE61CN1002MR	1.0V	4%	NMOS	$\pm 50 \text{mV}$	
	•••	•••			
HE61CC2402MR	2.4V	4%	CMOS	$\pm 50 \text{mV}$	SOT23-3
HE61CN2402MR	2.4V	4%	NMOS	$\pm 50 \text{mV}$	SOT23
HE61CC2502MR	2.5V	4%	CMOS	±2%	
HE61CN2502MR	2.5V	4%	NMOS	<u>+2</u> %	
	•••	•••		±2%	
HE61CC5002MR	5.0V	4%	CMOS	±2%	
HE61CN5002MR	5.0V	4%	NMOS	±2%	

Selection Table

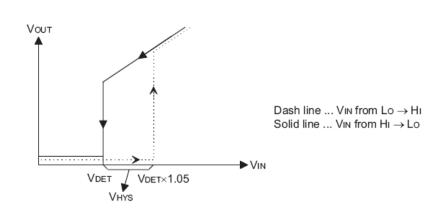


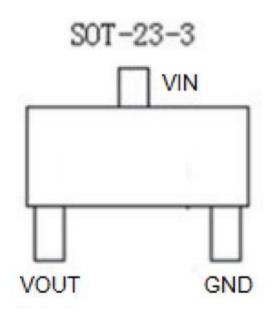

Order Information

HE61C1234567


Designator	Symbol	Description
(1)	С	CMOS output
	Ν	NMOS output
23	VOUT	Output Voltage(0.9~5.0V)
(4)(5)	02	Standard
(6)	М	Package:SOT23-3
0	Ν	Package:SOT23
(7)	R	RoHS/ Pb Free
U	G	Halogen Free

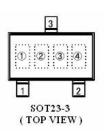
Block Diagram


(2) N-ch Open Drain Output



Output Table & Curve

V _{DD}	V _{DD} >V _{DET} (+)	V _{DD} ≪V _{DET} (-)
VOUT	Hi-Z	V _{SS}



Pin Assignment

Marking Rule

MARK	CONFIGURATION	VOLTAGE (V)	
А	CMOS	0.X	
В	CMOS	1.X	
С	CMOS	2.X	
D	CMOS	3.X	
E	CMOS	4.X	
F	CMOS	5.X	
H	CMOS	6.X	

N-Channel Open Drain Output

CMOS Output

① Represents integer of detect voltage and

MARK	CONFIGURATION	VOLTAGE (V)
K	N-ch	0.X
Ľ	N-ch	1.X
М	N-ch	2.X
N	N-ch	3.X
Р	N-ch	4.X
R	N-ch	5.X
S	N-ch	6.X

②Represents decimal number of detect voltage

MARK	VOLTAGE (V)	MARK	VOLTAGE (V)
0	X.0	5	X.5
1	X.1	6	X.6
2	X.2	7	X.7
3	3 X.3		X.8
4	X.4	9	X.9

③ Represents accuracy

MARK	ACCURACY
3	2%
1	1%

④Represents production lot number

Based on the internal standard. (G, I, J, O, Q, W excepted)

Absolute Maximum Ratings

Supply Voltage0.3 V	to 8V
Operating Temperature40°C	to 85℃

Storage Temperature50℃ to 125℃

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

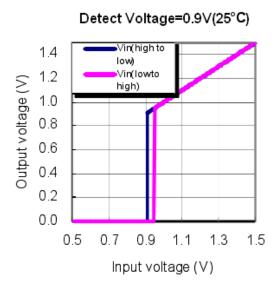
Thermal Information

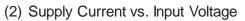
Symbol	Parameter	Package	Max.	Unit
θ_{JA}	Thermal Resistance (Junction to Ambient) (Assume no ambient airflow, no heat sink)	SOT23-3	500	°C/W
P _D	Power Dissipation	SOT23-3	0.20	W

Note: P_D is measured at Ta= 25 °C

Electrical Characteristics

V_{DF}=0.8V~5.0V


Ta=25℃


Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
		V _{DF} =0.9V~2.4V		V _{DET} -0.05	Vdet	V _{DET} +0.05	V
Vdet	Detection Voltage	Vi	_{DF} =2.5V~5.0V	V _{DET} *0.98	Vdet	V _{DET} *1.02	V
V _{HYS}	Hysteresis Width	-		0.02*V _{DET}	0.05*V _{DET}	0.10*V _{DET}	V
	Operating Current	Vin=1.5V		-	0.7	2.3	μA
		Vin=2.0V		-	0.8	2.7	
I _{DD}		Vin=3.0V		-	0.9	3.0	
		Vin=4.0V		-	1.0	3.2	
			Vin=5.0V	-	1.1	3.6	
V _{DD}	Operating Voltage	-	-	0.7	-	10	V
I _{OL}	Output Sink Current	2V	V _{OUT} =0.2V	0.5	1	-	mA
$\frac{\Delta V_{_{DET}}}{V_{_{DF}}\Delta T_a}$	Temperature Coefficient	-	-25℃ <ta<125℃< td=""><td>-</td><td>±100</td><td>-</td><td>ppm/°C</td></ta<125℃<>	-	±100	-	ppm/°C

Typical Performance Characteristics

(1) Output Voltage vs Input voltage

1.E-05

1.E-06

1.E-07

1.E-08

0

1

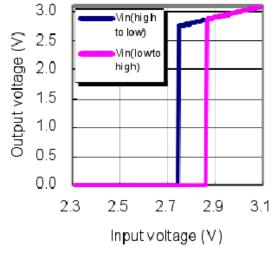
2

3

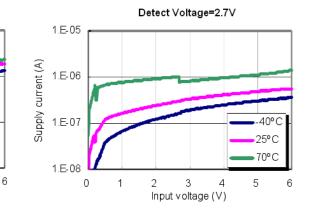
Input voltage (V)

4

Supply current(A)


Detect Voltage=0.9V

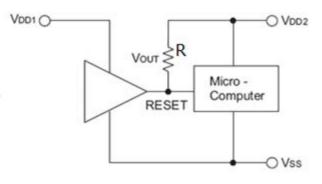
40°C


25⁰C

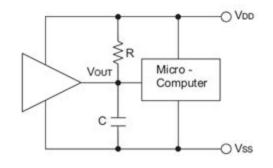
70°C

5

Detect Voltage=2.7V(25°C)

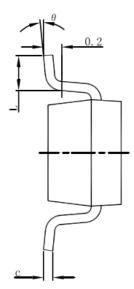


Application Circuits


Microcomputer Reset Circuit

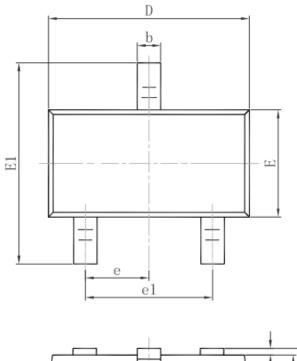
Normally a reset circuit is required to protect the microcomputer system from malfunctions due to power line interruptions. The following examples show how different output configurations perform a reset function in various systems. NMOS open drain output application for separate power supply

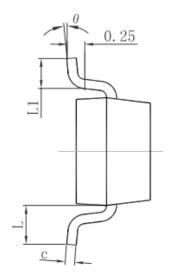
NMOS open drain output application with R-C delay

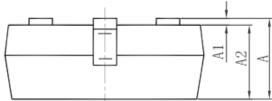


Package Information

3-pin SOT23-3 Outline Dimensions






Cumbral	Dimensions In	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	(BSC)	0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

3-pin SOT23 Outline Dimensions

Symbol	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min.	Min. Max.		Max.
A	0.900	1.150	0.035	0.045
A1	0.000	0.100	0.000	0.004
A2	0.900	1.050	0.035	0.041
b	0.300	0.500	0.012	0.020
С	0.080	0.150	0.003	0.006
D	2.800	3.000	0.110	0.118
E	1.200	1.400	0.047	0.055
E1	2.250	2.550	0.089	0.100
е	0.950) TYP.	0.037	'TYP.
e1	1.800	2.000	0.071	0.079
L	0.550 REF.		0.022	REF.
L1	0.300	0.500	0.012	0.020
θ	0°	8°	0°	8°

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Supervisory Circuits category:

Click to view products by HEERMICR manufacturer:

Other Similar products are found below :

NCP304LSQ40T1G CAT1161LI-25-G CAT853STBI-T3 TC54VN2402EMB713 MCP1316T-44NE/OT MCP1316MT-45GE/OT MCP1316MT-23LI/OT DS1232L NCV302HSN45T1G MCP1316T-23LI/OT PT7M6130NLTA3EX S-1000N28-I4T1U CAT1161LI-28-G MCP1321T-29AE/OT MCP1319MT-47QE/OT S-1000N23-I4T1U S-1000N19-I4T1U CAT824UTDI-GT3 TC54VC2502ECB713 PT7M6133NLTA3EX PT7M6127NLTA3EX BD48E23G-TR BD48E49G-TR BD48E52G-TR MP6412GQGU-Z XC61GN2502HR-G HG810RM3/TR ME2808A33XG ME2801A33M3G SGM809B-RXN3LG/TR HT7033S UM803RS UM805RE BL8506-40CRM SSP54123 SSP61CN1902MR Aip54123 MAX809C263NR HE61CN2402MR SL61CC2702MR-G UM810MS MAX809C293NR MAX809C308NR HE61CN2702MR UM811SE XC61CN1902MR BD48K34G-TL BL8506-20CRM CN825R XC61CC1502MR