

Quadruple 2-Input NAND Gates with Open-Drain Outputs

Description

This device contains four independent 2-input NAND Gates with open-drain outputs. Each gate performs the Boolean function $Y = A \bullet B$ in positive logic

Features

- Wide Operating Voltage Range: 2 V to 6 V
- Outputs Can Drive Up To 10 LSTTL Loads
- Low Power Consumption, 20-µA Maximum ICC
- Typical tpd = 8 ns at 5 V
- ±4-mA Output Drive at 5 V
- Low Input Current of 1 μA

Applications

NAND OD

Ordering Information

DEVICE	Package Type	MARKING	Packing	Packing Qty
74HC03N	DIP14	74HC03	TUBE	1000pcs/Box
74HC03M/TR	SOP14	74HC03	REEL	2500pcs/Reel
74HC03MT/TR	TSSOP14	74HC03	REEL	2500pcs/Reel

miconduc

Functional pinout

Pin Configuration

DIP14/SOP14/TSSOP14

Pin Functions

	PIN	1/0	DESCRIPTION
NAME	DIP/SOP/TSSOP	1/0	DESCRIPTION
1A	1	Input	Channel 1, Input A
1B	2	Input	Channel 1, Input B
1Y	3	Output	Channel 1, Output Y
2A	4	Input	Channel 2, Input A
2B	5	Input	Channel 2, Input B
2Y	6	Output	Channel 2, Output Y
GND	7		Ground
3Y	8	Output	Channel 3, Output Y
3A	9	Input	Channel 3, Input A
3B	10	Input	Channel 3, Input B
4Y	11	Output	Channel 4, Output Y
4A	12	Input	Channel 4, Input A
4B	13	Input	Channel 4, Input B
VCC	14		Positive Supply

Absolute Maximum Ratings

			MIN	MAX	UNIT
VCC	Supply voltage		-0.5	7	V
IIK	Input clamp current(2)	VI < 0 or VI > VCC		±20	mA
IOK	Output clamp current(2)	VO < 0 or VO > VCC		±20	mA
IO	Continuous output current	VO = 0 to VCC		±25	mA
	Continuous current through VCC or GND			±50	mA
TJ	Junction temperature(3)			150	°C
Tstg	Storage temperature		-65	150	°C

over operating free-air temperature range (unless otherwise noted)(1)

1. Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- 2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
- 3. Guaranteed by design.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
VCC	Supply voltage	all	2	5	6	V
		VCC = 2 V	1.5			
VIH	High-level input voltage	VCC = 4.5 V	3.15			V
		VCC = 6 V	4.2			
		VCC = 2 V			0.5	
VIL	Low-level input voltage	VCC = 4.5 V			1.35	V
		VCC = 6 V			1.8	
VI	Input voltage		0		VCC	V
VO	Output voltage		0		VCC	V
		VCC = 2 V			1000	
Δt/Δv	Input transition rise and fall rate	VCC = 4.5 V			500	ns
		VCC = 6 V			400	
TA	Operating free-air temperature	74HC03	-40		85	°C

Thermal Information

THERMAL METRIC(1)		(SOP)	(DIP)	(TSSOP)	UNIT
			14 PINS	14 PINS	
	Junction-to-ambient	122.6	66.0	151 7	°C/M
ROJA	thermal resistance	155.0	00.0	151.7	C/W
	Junction-to-case (top)	80	50.7	70.4	°C 1.11
RejC(lop)	thermal resistance	89	53.7	79.4	C/W
	Junction-to-board	90 F	45.7	04.7	°C/M
KØJD	thermal resistance	69.5	45.7	94.7	C/W
	Junction-to-top		22.2	05.0	°C 1.11
ΨJI	characterization parameter	45.5	33.3	25.2	C/W
	Junction-to-board characterization	80.1		04.4	°C/M
ΨJD	parameter	09.1	45.5	94.1	C/W
PAIC(bat)	Junction-to-case (bottom) thermal	NI/A		NI/A	°C/M
	resistance	IN/A	IN/A	IN/A	C/W

Electrical Characteristics

				_	Op	perating	free-air	tempe	rature (TA)	
PA	RAMETER	TEST CO	VCC		25°C		-40°C to 85°C			UNIT	
					MIN	TYP	MAX	MIN	TYP	MAX	
юн	Output voltage	VI = VIH or VIL	VO = VCC	6 V 0	Jo.	0.01	0.5			5	μA
				2 V		0.002	0.1			0.1	
VOL Low-level	VI = VIH	IOL = 20 µA	4.5 V		0.001	0.1			0.1	V	
			6 V		0.001	0.1			0.1		
			IOL = 4 mA	4.5 V		0.17	0.26			0.33	
			10L = 5.2 mA	6 V		0.15	0.26			0.33	
П	Input leakage current	VI = VC	CC or 0	6 V			±0.1			±1	μA
ICC	Supply current	VI = VCC or 0	IO = 0	6 V			2			20	μA
Ci	Input capacitance			2 V to 6 V		3	10			10	pF

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

(1) VCCI is the VCC associated with the input port.

(2) VCCO is the VCC associated with the output port.

Switching Characteristics

PARAMETER			то		Operating free-air temperature (TA)						
		FROM		vcc	25°C			-4	0°C to	85°C	UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
			2 V		60	105			131		
tplh	tplh Propagation	A or B	Y	4.5 V		13	25			31	ns
delay, low-to-nign			6 V		10	23			27		
				2 V		50	100			125	
tphl	Propagation delay	A or B	Y	4.5 V		10	20			25	ns
	nign-to-iow			6 V		8	17			21	
				2 V		38	75			95	
tt	Transition-time		Y	4.5 V		8	15			19	ns
				6 V		6	13			16	

over operating free-air temperature range (unless otherwise noted)

Operating Characteristics

over operating free-air temperature range; typical values measured at TA = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITION	IS	vcc	MIN	TYP	MAX	UNIT
Cod	Power dissipation	No load		2 V to 6 V	A.	20		nF
Opu	capacitance per gate	No load		2 1000		20		Pi

Typical Characteristics(TA = 25°C)

Figure 5-1. Typical output voltage in the low state (VOL)

Parameter Measurement Information

Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, ZO = 50 Ω , tt < 6 ns.

The outputs are measured one at a time, with one input transition per measurement

A. CL= 50 pF and includes probe and jig capacitance **Figure 6-1. Load Circuit** A. tt is the greater of tr and tf. Figure 6-2. Voltage Wave forms Transition Times

A. The maximum between tPLH and tPHL is used for tpd. Figure 6-3. Voltage Wave forms Propagation Delays

Overview

This device contains four independent 2-input NAND gates with open-drain outputs. Each gate performs the Boolean function $Y = A \bullet B$ in positive logic.

Functional Block Diagram

Feature Description

CMOS Open-Drain Outputs

The open-drain output allows the device to sink current to GND but not to source current from VCC. When the output is not actively pulling the line low, it will go into a high impedance state. This allows the device to be used for a wide variety of applications, including up-translation and down-translation, as the output voltage can be determined by an external pull-up resistor.

The current drive capability of this device creates fast edges into light loads, so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the power output of the device to be limited to avoid thermal runaway and damage due to over-current. The electrical and thermal limits defined the in the Absolute Maximum Ratingsmust be followed at all times.

The 74HC03 can drive a load with a total capacitance less than or equal to the maximum load listed in the Switching Characteristics connected to a high-impedance CMOS input while still meeting all of the datasheet specifications. Larger capacitive loads can be applied, however it is not recommended to exceed the provided load value. If larger capacitive loads are required, it is recommended to add a series resistor between the output and the capacitor to limit output current to the values given in the Absolute Maximum Ratings.

Standard CMOS Inputs

Standard CMOS inputs are high impedance and are typically modeled as a resistor from the input to ground in parallel with the input capacitance given in the Electrical Characteristics. The worst case resistance is calculated with the maximum input voltage, given in the Absolute Maximum Ratings, and the maximum input leakage current, given in the Electrical Characteristics, using ohm's law ($R = V \div I$).

Signals applied to the inputs need to have fast edge rates, as defined by the input transition time in the Recommended Operating Conditions to avoid excessive current consumption and oscillations. If a slow or noisy input signal is required, a device with a Sch mitt -trigger input should be used to condition the input signal prior to the standard CMOS input.

Clamp Diode Structure

The inputs and outputs to this device have both positive and negative clamping diodes as depicted in Figure 7-1.

CAUTION

Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to the device. The recommended input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

Figure 7-1. Electrical Placement of Clamping Diodes for Each Input and Output

Device Functional Modes

Table 7-1. Function Table

INP	UTS	OUTPUT
А	В	Y
Н	Н	L
L	x	Z
X	L	Z

Physical Dimensions

DIP14

Dimensions In Millimeters(DIP14)											
Symbol:	A	В	D	D1	Е	L	L1	а	с	d	
Min:	6.10	18.94	8.40	7.42	3.10	0.50	3.00	1.50	0.40	0.54.000	
Max:	6.68	19.56	9.00	7.82	3.55	0.70	3.60	1.55	0.50	2.54 BSC	

SOP14

Dimensions In Millimeters(SOP14)										
Symbol:	A	A1	В	С	C1	D	Q	а	b	
Min:	1.35	0.05	8.55	5.80	3.80	0.40	0°	0.35	1 07 000	
Max:	1.55	0.20	8.75	6.20	4.00	0.80	8°	0.45	1.27 030	

TSSOP14

Dimensions In Millimeters(TSSOP14)										
Symbol:	A	A1	В	С	C1	D	Q	а	b	
Min:	0.85	0.05	4.90	6.20	4.30	0.40	0°	0.20		
Max:	0.95	0.20	5.10	6.60	4.50	0.80	8°	0.25	0.05 650	
				C Hur	Guans		lictor			

http://www.hgsemi.com.cn

IMPORTANT STATEMENT:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the onsequences of the application of these products in these fields.

Huaguan Semiconductor Co,Ltd. the performance of the semiconductor products produced by the company can reach the performance indicators that can be applied at the time of sales. The use of testing and other quality control technologies is limite d to the quality assurance scope of Huaguan semiconductor. Not all parameters of each device need to be tested. The above documents are for reference only, and all are subject to the physical parameters.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by HGSEMI manufacturer:

Other Similar products are found below :

74HC85N NL17SG08P5T5G NL17SG32DFT2G NLVHC1G08DFT1G CD4068BE TC7SET32FU(T5L,JF) NL17SG86DFT2G NLV14001UBDR2G NLX1G11AMUTCG NLX1G97MUTCG 74LS38 74LVC1G08Z-7 74LVC32ADTR2G CD4025BE MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV17SZ126DFT2G NLV27WZ17DFT2G NLV74HC02ADR2G 74HC32S14-13 74LS133 74LVC1G32Z-7 74LVC1G86Z-7 NLV74HC14ADR2G NLV74HC20ADR2G NLX2G86MUTCG NLU1G00AMUTCG 74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G86HK3-7 NL17SG08DFT2G NLVVHC1G14DFT2G NLX1G99DMUTWG NLVX1G11AMUTCG NLVVHC1G00DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG NLV27WZ00USG NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7 NLVVHC1GT00DFT2G NLV74HC02ADTR2G NLX1G332CMUTCG