8-BIT PARALLEL-LOAD SHIFT REGISTERS

FEATURES

- Wide Operating Voltage Range of 2 V to 6 V
- Outputs Can Drive Up To 10 LSTTL Loads
- Low Power Consumption, $80-\mu \mathrm{A}$ Max I CC
- Typical $\mathrm{t}_{\mathrm{pd}}=13 \mathrm{~ns}$
- ± 4-mA Output Drive at 5 V
- Low Input Current of $1 \mu \mathrm{~A}$ Max
- Complementary Outputs
- Direct Overriding Load (Data) Inputs
- Gated Clock Inputs
- Parallel-to-Serial Data Conversion

SN54HC165 . . . J or W PACKAGE SN74HC165 . . . D, DB, N, NS, OR PW PACKAGE (TOP VIEW)

	U	
SH/LD	16	V_{CC}
CLK	215	$] \mathrm{CLK} \mathrm{INH}$
E	314	$]$ D
F	413] C
G	512] B
H	611	$] \mathrm{A}$
Q_{H}	710	1 SER
GND [8	Q_{H}

DESCRIPTION

The 'HC165 devices are 8-bit parallel-load shift registers that, when clocked, shift the data toward a serial $\left(Q_{H}\right)$ output. Parallel-in access to each stage is provided by eight individual direct data ($\mathrm{A}-\mathrm{H}$) inputs that are enabled by a low level at the shift/load (SH/ $\overline{\mathrm{LD}}$) input. The 'HC165 devices also feature a clock-inhibit (CLK INH) function and a complementary serial $(\overline{\mathrm{QH}})$ output.
Clocking is accomplished by a low-to-high transition of the clock (CLK) input while SH/LD is held high and CLK INH is held low. The functions of CLK and CLK INH are interchangeable. Since a low CLK and a low-to-high transition of CLK INH also accomplish clocking, CLK INH should be changed to the high level only while CLK is high. Parallel loading is inhibited when SH/LD is held high. While SH/LD is low, the parallel inputs to the register are enabled independently of the levels of the CLK, CLK INH, or serial (SER) inputs.

(1) Shift = content of each internal register shifts toward serial output Q_{H}. Data at SER is shifted into the first register.

LOGIC DIAGRAM (POSITIVE LOGIC)

Pin numbers shown are for theD, DB, J, N, NS, PW and W packages.

HuaGuan Semiconductor

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

			VALUE	UNITS
V_{CC}	Supply voltage range		-0.5 to 7	V
l_{IK}	Input clamp current	$\mathrm{V}_{1}<0$ or $\mathrm{V}_{1}>\mathrm{V}_{C C}{ }^{(2)}$	± 20	mA
Iok	Output clamp current	$\mathrm{V}_{\mathrm{O}}<0$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}{ }^{(2)}$	± 20	mA
10	Continuous output current	$\mathrm{V}_{\mathrm{O}}=0$ to V_{CC}	± 25	mA
	Continuous current through V		± 50	mA
		D package	73	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		DB Package	82	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JA}}{ }^{(3)}$	Package thermal impedance	N package	67	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		NS package	64	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		PW package	108	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65 to 150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
(3) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted)

			SN54HC165			SN74HC165			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage		2	5	6	2	5	6	V
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.5			1.5			
V_{IH}	High-level input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	3.15			3.15			V
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	4.2			4.2			
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			0.5			0.5	
$\mathrm{V}_{\text {IL }}$	Low level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			1.35			1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$			1.8			1.8	
V_{1}	Input voltage		0		V_{CC}	0		V_{CC}	V
V_{O}	Output voltage		0		V_{CC}	0		V_{CC}	V
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			1000			1000	
$\Delta t / \Delta v^{(2)}$	Input transition rise/fall time	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			500			500	ns
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$			400			400	
T_{A}	Operating free-air temperature		-55		125	-40		125	${ }^{\circ} \mathrm{C}$

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
(2) If this device is used in the threshold region (from $\mathrm{V}_{\mathrm{IL}} \max =0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{IH}} \min =1.5 \mathrm{~V}$), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at $t_{t}=1000 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{Cc}}=2 \mathrm{~V}$ does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.

74HC165

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC165$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		$\begin{gathered} \text { SN74HC165 } \\ -40^{\circ} \mathrm{C} \text { TO } 85^{\circ} \mathrm{C} \end{gathered}$		Recommended SN74HC165 $-40^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
V_{OH}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A}$		2 V	1.9	1.998		1.9		1.9		1.9		V
			4.5 V	4.4	4.499		4.4		4.4		4.4			
			6 V	5.9	5.999		5.9		5.9		5.9			
		$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	4.5 V	3.98	4.3		3.7		3.84		3.7			
		$\mathrm{IOH}=-5.2 \mathrm{~mA}$	6 V	5.48	5.8		5.2		5.34		5.2			
V_{OL}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{I}_{\mathrm{OL}}=20 \mu \mathrm{~A}$	2 V		0.002	0.1	0.1			0.1		0.1	V	
			4.5 V		0.001	0.1	0.1			0.1		0.1		
			6 V		0.001	0.1	0.1			0.1		0.1		
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$	4.5 V		0.17	0.26	0.4			0.33		0.4		
		$\mathrm{I}_{\mathrm{OL}}=5.2 \mathrm{~mA}$	6 V		0.15	0.26	0.4			0.33		0.4		
1	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or 0		6 V		± 0.1	± 100	± 1000			± 1000		± 1000	nA	
ICC	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or 0 ,	$\mathrm{l}_{0}=0$	6 V			8	160			80		160	$\mu \mathrm{A}$	
C_{i}			$\underset{\mathrm{V}}{2 \mathrm{~V} \text { to } 6}$		3	10	10			10		10	pF	

74HC165

TIMING REQUIREMENTS

over recommended operating free-air temperature range (unless otherwise noted)

			V_{cc}	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	SN54HC165 $-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$	SN74HC165 $-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$	Recommended SN74HC165 $-40^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$	UNIT
				MIN MAX	MIN MAX	MIN MAX	MIN MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency		2 V	6	4.2	5	4.2	MHz
			4.5 V	31	21	25	21	
			6 V	36	25	29	25	
t_{w}	Pulse duration	SH/LD low	2 V	80	120	100	120	ns
			4.5 V	16	24	20	24	
			6 V	14	20	17	20	
		CLK high or low	2 V	80	120	100	120	
			4.5 V	16	24	20	24	
			6 V	14	20	17	20	
$\mathrm{t}_{\text {su }}$	Setup time	$\mathrm{SH} / \overline{\mathrm{LD}}$ high before CLK \uparrow	2 V	80	120	100	120	ns
			4.5 V	16	24	20	24	
			6 V	14	20	17	20	
		SER before CLK \uparrow	2 V	40	60	50	60	
			4.5 V	8	12	10	12	
			6 V	7	10	9	10	
		CLK INH low before CLK \uparrow	2 V	100	150	125	150	
			4.5 V	20	30	25	30	
			6 V	17	25	21	25	
		CLK INH high before CLK \uparrow	2 V	40	60	50	60	
			4.5 V	8	12	10	12	
			6 V	7	10	9	10	
		Data before SH/[D \downarrow	2 V	100	150	125	150	ns
			4.5 V	20	30	25	30	
			6 V	17	26	21	26	
t_{n}	Hold time	SER data after CLK \uparrow	2 V	5	5	5	5	
			4.5 V	5	5	5	5	
			6 V	5	5	5	5	
		PAR data after SH/ $/ \overline{L D} \downarrow$	2 V	5	5	5	5	
			4.5 V	5	5	5	5	
			6 V	5	5	5	5	

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	V_{CC}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{gathered} \text { SN54HC165 } \\ -55^{\circ} \mathrm{C} \text { TO } 125^{\circ} \mathrm{C} \end{gathered}$	SN74HC165 $-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$	Recommended SN74HC165 $-40^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$	UNIT
				MIN	TYP	MAX	MIN MAX	MIN MAX	MIN MAX	
$\mathrm{f}_{\text {max }}$			2 V	6	13		4.2	5	4.2	MHz
			4.5 V	31	50		21	25	21	
			6 V	36	62		25	29	25	
t_{pd}	SH/LD	Q_{H} or $\overline{\mathrm{Q}}_{\mathrm{H}}$	2 V		80	150	225	190	225	ns
			4.5 V		20	30	45	38	45	
			6 V		16	26	38	32	38	
	CLK	Q_{H} or \bar{Q}_{H}	2 V		75	150	225	190	225	
			4.5 V		15	30	45	38	45	
			6 V		13	26	38	32	38	
	H	Q_{H} or Q_{H}	2 V		75	150	225	190	225	
			4.5 V		15	30	45	38	45	
			6 V		13	26	38	32	38	
t_{t}		Any	2 V		38	75	110	95	110	ns
			4.5 V		8	15	22	19	22	
			6 V		6	13	19	16	19	

OPERATING CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	TEST CONDITIONS	TYP
C_{pd}	UNIT	UN dissipation capacitance	No load

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS PULSE DURATIONS

VOLTAGE WAVEFORMS
SETUP AND HOLD AND INPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT TRANSITION TIMES

NOTES: A. C_{L} includes probe and test-fixture capacitance.
B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$.
C. For clock inputs, $f_{\max }$ is measured when the input duty cycle is 50%.
D. The outputs are measured one at a time with one input transition per measurement.
E. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d}$.

Figure 1. Load Circuit and Voltage Waveforms

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Counter Shift Registers category:
Click to view products by HGSEMI manufacturer:
Other Similar products are found below :
5962-8956101EA MC10E446FNG 74HC195N 74HC4516N 74HCT182N HEF4021BD HEF4534BP MC144111P NLV74HC165ADTR2G
5962-9172201M2A MC74HC597ADG MC100EP142MNG MC100EP016AMNG 5962-9172201MFA MC74HC164BDR2G
TC74HC165AP(F) 74AHC164T14-13 MC74LV594ADR2G NLV14094BDTR2G NLV74HC595ADTG MC74HC165AMNTWG
TPIC6C595PWG4 74VHC164MTCX CD74HC195M96 CD4073BM96 CD4053BM96 MM74HC595MTCX 74HCT164T14-13
74HCT164S14-13 74HC4094D-Q100J NLV14014BFELG NLV74HC165ADR2G NLV74HC589ADTR2G NPIC6C595D-Q100, 11 NPIC6C595PW,118 NPIC6C596ADJ NPIC6C596APW-Q100J NPIC6C596D-Q100,11 BU4094BCF-E2 BU4094BCFV-E2 74HC164D14

74HC164T14-13 TPIC6C596PWRG4 STPIC6D595MTR STP08CP05MTR CD74HC123E 74HC164D.653 74HC165D.653
74HCT165D.652 74HCT164D. 652

