Triple 2-channel analog multiplexer/demultiplexer

1. General description

The 74HC4053; 74HCT4053 is a high-speed Si-gate CMOS device and is pin compatible with the HEF4053B. It is specified in compliance with JEDEC standard no. 7A.

The 74HC4053; 74HCT4053 is triple 2-channel analog multiplexer/demultiplexer with a common enable input ($\overline{\mathrm{E}}$). Each multiplexer/demultiplexer has two independent inputs/outputs (nY0 and nY1), a common input/output (nZ) and three digital select inputs (Sn). With $\overline{\mathrm{E}}$ LOW, one of the two switches is selected (low-impedance ON-state) by S1 to S3. With $\overline{\bar{E}}$ HIGH, all switches are in the high-impedance OFF-state, independent of S1 to S3.
$V_{C C}$ and GND are the supply voltage pins for the digital control inputs (S 0 to S 2 , and $\overline{\mathrm{E}}$). The V_{CC} to GND ranges are 2.0 V to 10.0 V for 74 HC 4053 and 4.5 V to 5.5 V for 74HCT4053. The analog inputs/outputs ($\mathrm{nY0}$ to $\mathrm{nY1}$, and nZ) can swing between V_{cc} as a positive limit and V_{EE} as a negative limit. $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ may not exceed 10.0 V .

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

2. Features and benefits

■ Wide analog input voltage range from -5 V to +5 V
■ Low ON resistance:
80Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}$
70Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=6.0 \mathrm{~V}$
60Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9.0 \mathrm{~V}$

- Logic level translation: to enable 5 V logic to communicate with $\pm 5 \mathrm{~V}$ analog signals

■ Typical 'break before make' built-in

- ESD protection:

HBM JESD22-A114F exceeds 2000 V
MM JESD22-A115-A exceeds 200 V
■ Multiple package options
■ Specified from $-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

3. Applications

- Analog multiplexing and demultiplexing

■ Digital multiplexing and demultiplexing

- Signal gating

4. Functional diagram

Fig 1. Functional diagram

Fig 2. Logic symbol

Fig 3. IEC logic symbol
®

Fig 4. Schematic diagram (one switch)

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
$\overline{\mathrm{E}}$	6	enable input (active LOW)
V_{EE}	7	supply voltage
GND	8	ground supply voltage
S1, S2, S3	$11,10,9$	select input
$1 \mathrm{YO}, 2 \mathrm{Y}, 3 \mathrm{YO}$	$12,2,5$	independent input or output
$1 \mathrm{Y} 1,2 \mathrm{Y} 1,3 \mathrm{Y} 1$	$13,1,3$	independent input or output
$1 Z, 2 Z, 3 Z$	$14,15,4$	common output or input
V_{CC}	16	supply voltage

6. Functional description

Table 3. Function table [1]

Inputs	Sn	Channel on
$\overline{\text { E }}$	L	
L	H	nY0 to nZ
L	X	nY1 to nZ
H	switches off	

[1] $\mathrm{H}=$ HIGH voltage level; $\mathrm{L}=$ LOW voltage level; $\mathrm{X}=$ don't care.

7. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{S S}=0 \mathrm{~V}$ (ground).

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{V}_{\text {cc }}$	supply voltage	[1]	-0.5	+11.0	V
I_{IK}	input clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 20	mA
$\mathrm{I}_{\text {SK }}$	switch clamping current	$\mathrm{V}_{\mathrm{SW}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{SW}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 20	mA
Isw	switch current	$-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{SW}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 25	mA
$\mathrm{l}_{\text {EE }}$	supply current		-	± 20	mA
ICC	supply current		-	50	mA
IGND	ground current		-	-50	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	DIP16 package [2]	-	750	mW
		SO16, (T)SSOP16, and DHVQFN16 package	-	500	mW
P	power dissipation	per switch	-	100	mW

[^0][3] For SO16 packages: above $70^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$. For SSOP16 and TSSOP16 packages: above $60^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $5.5 \mathrm{~mW} / \mathrm{K}$. For DHVQFN16 packages: above $60^{\circ} \mathrm{C}$ the value of $P_{\text {tot }}$ derates linearly with $4.5 \mathrm{~mW} / \mathrm{K}$.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	74HC4053			74HCT4053			Unit
			Min	Typ	Max	Min	Typ	Max	
V_{CC}	supply voltage	see Figure 7 and Figure 8							
		$\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}$	2.0	5.0	10.0	4.5	5.0	5.5	V
		$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	2.0	5.0	10.0	2.0	5.0	10.0	V
V_{1}	input voltage		GND	-	V_{Cc}	GND	-	V_{Cc}	V
$\mathrm{V}_{\text {SW }}$	switch voltage		$V_{\text {EE }}$	-	V_{Cc}	V_{EE}	-	V_{Cc}	V
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	+25	+125	-40	+25	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	625	-	-	-	ns/V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	1.67	139	-	1.67	139	ns/V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-	83	-	-	-	ns/V
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	31	-	-	-	ns/V

Fig 7. Guaranteed operating area as a function of the supply voltages for $74 \mathrm{HC4053}$

Fig 8. Guaranteed operating area as a function of the supply voltages for 74HCT4053
®

9. Static characteristics

Table 6. Ron resistance per switch for 74HC4053 and 74HCT4053
$V_{I}=V_{I H}$ or $V_{I L}$; for test circuit see Figure 9.
$V_{i s}$ is the input voltage at a $n Y n$ or nZ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.
For 74HC4053: $V_{C C}-G N D$ or $V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .
For 74HCT4053: $V_{C C}-G N D=4.5 \mathrm{~V}$ and $5.5 \mathrm{~V}, V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$						
$\mathrm{R}_{\text {ON(peak) }}$	ON resistance (peak)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {CC }}$ to $\mathrm{V}_{\text {EE }}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A}$	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	100	180	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	90	160	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	70	130	Ω
$\mathrm{R}_{\text {ON(rail) }}$	ON resistance (rail)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A}$	-	150	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	80	140	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	70	120	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	60	105	Ω
		$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {cc }}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A} \quad$ [1]	-	150	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	90	160	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	80	140	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	65	120	Ω
$\triangle \mathrm{R}_{\text {ON }}$	ON resistance mismatch between channels	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {CC }}$ to $\mathrm{V}_{\text {EE }}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	9	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	8	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V}$	-	6	-	Ω
$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$						
$\mathrm{R}_{\text {ON(} \text { (eak) }}$	ON resistance (peak)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {CC }}$ to $\mathrm{V}_{\text {EE }}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A} \quad$ [1]	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	-	225	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	-	200	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	-	165	Ω

Table 6. R_{ON} resistance per switch for $74 \mathrm{HC4053}$ and 74HCT4053 ...continued
$V_{I}=V_{I H}$ or $V_{I L}$; for test circuit see Figure 9.
$V_{i s}$ is the input voltage at a $n Y n$ or nZ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.
For 74HC4053: $V_{C C}-G N D$ or $V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .
For 74HCT4053: $V_{C C}-G N D=4.5 \mathrm{~V}$ and $5.5 \mathrm{~V}, V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{R}_{\mathrm{ON} \text { (rail) }}$	ON resistance (rail)	$V_{\text {is }}=V_{\text {EE }}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A}$	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	-	175	Ω
		$\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	-	150	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	-	130	Ω
		$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{Cc}}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A}$	-	-	-	Ω
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	-	200	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	-	175	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	-	150	Ω
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$						
$\mathrm{R}_{\text {ON(peak) }}$	ON resistance (peak)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}}$ to V_{EE}				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A}$	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	-	270	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	-	240	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	-	195	Ω
$\mathrm{R}_{\text {ON(rail) }}$	ON resistance (rail)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A}$	-	-	-	Ω
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	-	210	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	-	180	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V} ; \mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	-	-	160	Ω
		$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{Cc}}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A} \quad$ [1]	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	-	240	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	-	210	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	-	-	180	Ω

[1] When supply voltages $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ near 2.0 V the analog switch ON resistance becomes extremely non-linear. When using a supply of 2 V , it is recommended to use these devices only for transmitting digital signals.

$$
\begin{aligned}
& \mathrm{V}_{\text {is }}=0 \mathrm{~V} \text { to }\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right) . \\
& R_{O N}=\frac{V_{s w}}{I_{s w}}
\end{aligned}
$$

Fig 9. Test circuit for measuring R_{ON}

$$
V_{\text {is }}=0 V \text { to }\left(V_{C C}-V_{E E}\right) .
$$

(1) $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
(2) $V_{C C}=6 \mathrm{~V}$
(3) $V_{C C}=9 \mathrm{~V}$

Fig 10. Typical $R_{O N}$ as a function of input voltage $V_{i s}$

Table 7. Static characteristics for 74HC4053
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).
$V_{i s}$ is the input voltage at pins $n Y n$ or $n Z$, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at pins nZ or nYn, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.5	1.2	-	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15	2.4	-	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	4.2	3.2	-	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	6.3	4.7	-	V
VIL	LOW-level input voltage	$\mathrm{V}_{\mathrm{Cc}}=2.0 \mathrm{~V}$	-	0.8	0.5	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	2.1	1.35	V
		$\mathrm{V}_{\mathrm{cc}}=6.0 \mathrm{~V}$	-	2.8	1.8	V
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	-	4.3	2.7	V
1	input leakage current	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	± 0.1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	± 0.2	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure } 11} \end{aligned}$				
		per channel	-	-	± 0.1	$\mu \mathrm{A}$
		all channels	-	-	± 0.1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON }}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mid \mathrm{V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \\ & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \text {; see Figure } 12 \end{aligned}$	-	-	± 0.1	$\mu \mathrm{A}$

Table 7. Static characteristics for 74HC4053 ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).
$V_{i s}$ is the input voltage at pins $n Y n$ or $n Z$, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at pins $n Z$ or $n Y n$, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
ICC	supply current	$\begin{aligned} & V_{E E}=0 V_{;} V_{1}=V_{C C} \text { or } G N D ; V_{i s}=V_{E E} \text { or } V_{C C} ; \\ & V_{O S}=V_{C C} \text { or } V_{E E} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	8.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	16.0	$\mu \mathrm{A}$
C_{1}	input capacitance		-	3.5	-	pF
$\mathrm{C}_{\text {sw }}$	switch capacitance	independent pins nYn	-	5	-	pF
		common pins nZ	-	8	-	pF
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{cc}}=2.0 \mathrm{~V}$	1.5	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15	-	-	V
		$\mathrm{V}_{\mathrm{cc}}=6.0 \mathrm{~V}$	4.2	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	6.3	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	0.5	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	1.35	V
		$\mathrm{V}_{\mathrm{cc}}=6.0 \mathrm{~V}$	-	-	1.8	V
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	-	-	2.7	V
1	input leakage current	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND				
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	± 2.0	$\mu \mathrm{A}$
IS(OFF)	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure } 11} \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mid \mathrm{V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \\ & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \text { see Figure } 12 \end{aligned}$	-	-	± 1.0	$\mu \mathrm{A}$
Icc	supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	80.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.5	-	-	V
		$\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$	3.15	-	-	V
		$\mathrm{V}_{\mathrm{cc}}=6.0 \mathrm{~V}$	4.2	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	6.3	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{cc}}=2.0 \mathrm{~V}$	-	-	0.5	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	1.8	V
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	-	-	2.7	V

Table 7. Static characteristics for 74HC4053 ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).
$V_{\text {is }}$ is the input voltage at pins $n Y n$ or $n Z$, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at pins $n Z$ or $n Y n$, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
1	input leakage current	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	± 2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mid \mathrm{V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 11 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{IS}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ;\left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \\ & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \text { see Figure 12 } \end{aligned}$	-	-	± 1.0	$\mu \mathrm{A}$
ICC	supply current	$\begin{aligned} & V_{\mathrm{EE}}=0 \mathrm{~V}_{;} \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\mathrm{is}}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$				
		$\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	320.0	$\mu \mathrm{A}$

Table 8. Static characteristics for 74HCT4053
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).
$V_{\text {is }}$ is the input voltage at pins $n Y n$ or $n Z$, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at pins $n Z$ or $n Y n$, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	2.0	1.6	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	1.2	0.8	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	± 0.1	$\mu \mathrm{A}$
IS (OFF)	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mid \mathrm{V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 11 \end{aligned}$				
		per channel	-	-	± 0.1	$\mu \mathrm{A}$
		all channels	-	-	± 0.1	$\mu \mathrm{A}$
$\mathrm{IS}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 12 \end{aligned}$	-	-	± 0.1	$\mu \mathrm{A}$
Icc	supply current	$\begin{aligned} & V_{1}=V_{C C} \text { or } G N D ; V_{\text {is }}=V_{E E} \text { or } V_{C C} ; \\ & V_{o S}=V_{C C} \text { or } V_{E E} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	8.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$	-	-	16.0	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional supply current	per input; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or GND; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	50	180	$\mu \mathrm{A}$
C_{1}	input capacitance		-	3.5	-	pF
$\mathrm{C}_{\text {sw }}$	switch capacitance	independent pins nYn	-	5	-	pF
		common pins nZ	-	8	-	pF

Table 8. Static characteristics for 74HCT4053 ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).
$V_{i s}$ is the input voltage at pins $n Y n$ or $n Z$, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at pins $n Z$ or $n Y n$, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.8	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{IS}_{\text {(OFF }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure } 11} \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mid \mathrm{V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure 12 } \end{aligned}$	-	-	± 1.0	$\mu \mathrm{A}$
ICC	supply current	$\begin{aligned} & V_{1}=V_{C C} \text { or } G N D ; V_{\text {is }}=V_{E E} \text { or } V_{C C} ; \\ & V_{O S}=V_{C C} \text { or } V_{E E} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	80.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional supply current	per input; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{Cc} or GND; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	225	$\mu \mathrm{A}$
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.8	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 11 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure } 12} \end{aligned}$	-	-	± 1.0	$\mu \mathrm{A}$
ICC	supply current	$\begin{aligned} & V_{1}=V_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$	-	-	320.0	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional supply current	per input; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or $\mathrm{GND} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	245	$\mu \mathrm{A}$

$V_{\text {is }}=V_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{EE}}$.
$V_{\text {is }}=V_{E E}$ and $V_{o s}=V_{C C}$.
Fig 11. Test circuit for measuring OFF-state current

$V_{\text {is }}=V_{C C}$ and $V_{\text {os }}=$ open-circuit.
$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\mathrm{os}}=$ open-circuit.
Fig 12. Test circuit for measuring ON-state current

10. Dynamic characteristics

Table 9. Dynamic characteristics for 74HC4053
GND $=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; for test circuit see Figure 15 .
$V_{i s}$ is the input voltage at a $n Y n$ or nZ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
t_{pd}	propagation delay	$\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }} ; \mathrm{R}_{\mathrm{L}}=\infty \Omega$; see Figure 13				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	15	60	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	5	12	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	4	10	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	4	8	ns

Table 9. Dynamic characteristics for 74HC4053 ...continued
$G N D=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; for test circuit see Figure 15 .
$V_{i s}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
t_{on}	turn-on time	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }} ; \mathrm{R}_{\mathrm{L}}=\infty \Omega$; see Figure 14 [2]				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	60	220	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	20	44	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	17	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	16	37	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	15	31	ns
		Sn to $\mathrm{V}_{\text {os }} ; \mathrm{R}_{\mathrm{L}}=\infty \Omega$; see Figure 14 [2]				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	75	220	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	25	44	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	21	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	20	37	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V}$	-	15	31	ns
$\mathrm{t}_{\text {off }}$	turn-off time	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$; see Figure 14 [3]				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	63	210	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	21	42	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	18	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V}$	-	17	36	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	15	29	ns
		Sn to $\mathrm{V}_{\text {os }} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 14 [3]				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	60	210	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	20	42	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	17	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	16	36	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	15	29	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	per switch; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC} [4]	-	36	-	pF
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
t_{pd}	propagation delay	$\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\mathrm{os}} ; \mathrm{R}_{\mathrm{L}}=\infty \Omega$; see Figure 13 [1]				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	75	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V}$	-	-	15	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V}$	-	-	13	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	10	ns

Table 9. Dynamic characteristics for 74HC4053 ...continued
$G N D=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; for test circuit see Figure 15 .
$V_{i s}$ is the input voltage at a $n Y n$ or nZ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
t_{on}	turn-on time	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\mathrm{os}} ; \mathrm{R}_{\mathrm{L}}=\infty \Omega$; see Figure 14 [${ }^{\text {[2] }}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	275	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	55	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	47	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	39	ns
		Sn to $\mathrm{V}_{\mathrm{os}} ; \mathrm{R}_{\mathrm{L}}=\infty \Omega$; see Figure 14 [2]				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	275	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	55	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	47	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	39	ns
$\mathrm{t}_{\text {off }}$	turn-off time	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\mathrm{os}} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 14 [3]				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	265	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	53	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	45	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	36	ns
		Sn to $\mathrm{V}_{\mathrm{os}} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 14 [3]				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	265	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	53	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V}$	-	-	45	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	36	ns
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$						
$\mathrm{t}_{\text {pd }}$	propagation delay	$\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }} ; \mathrm{R}_{\mathrm{L}}=\infty \Omega$; see Figure 13				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	90	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	18	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	15	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	12	ns
t_{on}	turn-on time	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\mathrm{os}} ; \mathrm{R}_{\mathrm{L}}=\infty \Omega$; see Figure 14 [2]				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	330	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	66	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	56	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	47	ns
		Sn to $\mathrm{V}_{\mathrm{os}} ; \mathrm{R}_{\mathrm{L}}=\infty \Omega$; see Figure 14 [2]				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	330	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V}$	-	-	66	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	56	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	47	ns

Table 9. Dynamic characteristics for 74HC4053 ...continued
$G N D=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; for test circuit see Figure 15.
$V_{i s}$ is the input voltage at a $n Y n$ or nZ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$\mathrm{t}_{\text {off }}$	turn-off time	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 14	[3]				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	315	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	63	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	54	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$		-	-	44	ns
		Sn to $\mathrm{V}_{\mathrm{os}} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 14	[3]				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	315	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	63	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		-	-	54	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$		-	-	44	ns

[1] $t_{p d}$ is the same as $t_{\text {PHL }}$ and $t_{\text {PLH. }}$.
[2] t_{on} is the same as $\mathrm{t}_{\text {PzH }}$ and $t_{\text {PzL- }}$.
[3] $t_{\text {off }}$ is the same as $t_{\text {PHZ }}$ and $t_{\text {PLZ }}$.
[4] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left\{\left(C_{L}+C_{s w}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{N}=$ number of inputs switching;
$\Sigma\left\{\left(\mathrm{C}_{\mathrm{L}}+\mathrm{C}_{\mathrm{sw}}\right) \times \mathrm{V}_{\mathrm{cc}}{ }^{2} \times \mathrm{f}_{\mathrm{o}}\right\}=$ sum of outputs;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{sw}}=$ switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .

Table 10. Dynamic characteristics for 74HCT4053
GND $=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; for test circuit see Figure 15.
$V_{i s}$ is the input voltage at a $n Y n$ or nZ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
$\mathrm{t}_{\text {pd }}$	propagation delay	$\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\mathrm{os}} ; \mathrm{R}_{\mathrm{L}}=\infty \Omega$; see Figure 13				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	5	12	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	4	8	ns
$\mathrm{t}_{\text {on }}$	turn-on time	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$; see Figure 14				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	27	48	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	23	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	16	34	ns
		Sn to $\mathrm{V}_{\text {os }} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 14				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	25	48	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	21	-	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	16	34	ns

Table 10. Dynamic characteristics for 74HCT4053 ...continued
$G N D=0 V ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; for test circuit see Figure 15.
$V_{i s}$ is the input voltage at a $n Y n$ or nZ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Table 10. Dynamic characteristics for 74HCT4053 ...continued
GND $=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; for test circuit see Figure 15.
$V_{i s}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{t}_{\text {off }}$	turn-off time	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 14				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	66	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	47	ns
		Sn to $\mathrm{V}_{\mathrm{os}} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 14				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	66	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	47	ns

[1] $t_{p d}$ is the same as $t_{\text {PHL }}$ and $t_{\text {PLH. }}$.
[2] $t_{o n}$ is the same as $t_{P Z H}$ and $t_{\text {PzL }}$.
[3] $t_{\text {off }}$ is the same as $t_{\text {PHZ }}$ and $t_{\text {PLZ }}$.
[4] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left\{\left(C_{L}+C_{s w}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{N}=$ number of inputs switching;
$\Sigma\left\{\left(\mathrm{C}_{\mathrm{L}}+\mathrm{C}_{\mathrm{sw}}\right) \times \mathrm{V}_{\mathrm{Cc}}{ }^{2} \times \mathrm{f}_{\mathrm{o}}\right\}=$ sum of outputs;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{sw}}=$ switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .

Fig 13. Input $\left(\mathrm{V}_{\mathrm{is}}\right)$ to output $\left(\mathrm{V}_{\mathrm{os}}\right)$ propagation delays

For 74HC4053: $\mathrm{V}_{\mathrm{M}}=0.5 \times \mathrm{V}_{\mathrm{CC}}$.
For 74HCT4053: $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V}$.
Fig 14. Turn-on and turn-off times

Definitions for test circuit; see Table 11:
$R_{T}=$ termination resistance should be equal to the output impedance Z_{o} of the pulse generator.
$C_{L}=$ load capacitance including jig and probe capacitance.
$R_{L}=$ load resistance.
S1 = Test selection switch.
Fig 15. Test circuit for measuring AC performance

Table 11. Test data

Test	Input				Load		S1 position
	V_{1}	$\mathrm{V}_{\text {is }}$	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$		C_{L}	\mathbf{R}_{L}	
			at $\mathrm{f}_{\text {max }}$	other [1]			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	[2]	pulse	<2 ns	6 ns	50 pF	$1 \mathrm{k} \Omega$	open
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	[2]	$\mathrm{V}_{\text {CC }}$	$<2 \mathrm{~ns}$	6 ns	50 pF	$1 \mathrm{k} \Omega$	$\mathrm{V}_{\text {EE }}$
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	[2]	V_{EE}	<2 ns	6 ns	50 pF	$1 \mathrm{k} \Omega$	V_{Cc}

[1] $t_{r}=t_{f}=6 \mathrm{~ns}$; when measuring $f_{\text {max }}$, there is no constraint to t_{r} and t_{f} with 50% duty factor.
[2] V, values:
a) For 74HC4053: $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{cc}}$
b) For $74 \mathrm{HCT} 4053: \mathrm{V}_{\mathrm{I}}=3 \mathrm{~V}$

10.1 Additional dynamic characteristics

Table 12. Additional dynamic characteristics
Recommended conditions and typical values; GND $=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.
$V_{i s}$ is the input voltage at pins $n Y n$ or $n Z$, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at pins $n Y n$ or $n Z$, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{d}_{\text {sin }}$	sine-wave distortion	$\mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$; see Figure 16				
		$\mathrm{V}_{\text {is }}=4.0 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V}$	-	0.04	-	\%
		$\mathrm{V}_{\text {is }}=8.0 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	0.02	-	\%
		$\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$; see Figure 16				
		$\mathrm{V}_{\text {is }}=4.0 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V}$	-	0.12	-	\%
		$\mathrm{V}_{\text {is }}=8.0 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	0.06	-	\%
$\alpha_{\text {iso }}$	isolation (OFF-state)	$\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; see Figure 17				
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-2.25 \mathrm{~V}$	-	-50	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-50	-	dB
Xtalk	crosstalk	between two switches/multiplexers; $R_{L}=600 \Omega ; f_{i}=1 \mathrm{MHz}$; see Figure 18				
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V}$	-	-60	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-60	-	dB
$\mathrm{V}_{\text {ct }}$	crosstalk voltage	peak-to-peak value; between control and any switch; $R_{L}=600 \Omega$; $f_{i}=1 \mathrm{MHz}$; $\overline{\mathrm{E}}$ or Sn square wave between $V_{C C}$ and GND; $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$; see Figure 19				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	110	-	mV
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V}$	-	220	-	mV
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	$\mathrm{R}_{\mathrm{L}}=50 \Omega$; see Figure 20				
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V}$	-	160	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	170	-	MHz

[1] Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level ($0 \mathrm{dBm}=1 \mathrm{~mW}$ into 600Ω).
[2] Adjust input voltage $V_{\text {is }}$ to 0 dBm level at $\mathrm{V}_{\text {os }}$ for $1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$.
®

Fig 16. Test circuit for measuring sine-wave distortion

$$
\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega .
$$

a. Test circuit

b. Isolation (OFF-state) as a function of frequency

Fig 17. Test circuit for measuring isolation (OFF-state)

Fig 18. Test circuits for measuring crosstalk between any two switches/multiplexers

Fig 19. Test circuit for measuring crosstalk between control input and any switch

$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega$.
a. Test circuit

b. Typical frequency response

Fig 20. Test circuit for frequency response

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switch ICs - Various category:
Click to view products by HGSEMI manufacturer:

Other Similar products are found below :
BCM56226B0IPBG LC824206XA-VH 80HCPS1432RM FSA806UMX BCM56152A0IFSBLG 80HCPS1432CHMHI MAX4936ACTO+ 80HSPS1616CHMGI NL3S325FCT2G BCM56152A0KFSBLG BCM56150A0KFSBLG BCM56024B0KPBG CPC7583BA NC7SZ157P6X ACST12-7CG-TR FSA9280AUMX MAX14626ETT+T NL7SZ19DFT2G SRC0CS25D MAX14808ETK MAX4937CTN+ DG2788ADN-T1-GE4 DGQ2788AEN-T1-GE4 LTC6943IGN\#PBF MCZ33999EKR2 LTC1471CS\#PBF LTC1472CS\#PBF LTC1043CSW\#PBF PI4MSD5V9548ALEX NCX8200UKZ LTC6943HGN\#PBF PI3CH480QE HT1204 89H48T12G2ZCBLG PI3C3245QE ADG409BRZREEL7 ADG5462FBRUZ-RL7 ADN4604ASVZ LTC1043CN LTC1043CN\#PBF LTC1470ES8\#PBF PI4MSD5V9548AZDEX AP2280-2FMG-7 AZV5001RA4-7 PI3B3253QEX PI3CH480QEX 74HC4053N 74HC139N 74HC138N XD74LS138

[^0]: [1] To avoid drawing V_{cc} current out of terminal nZ , when switch current flows into terminals $\mathrm{n} Y \mathrm{n}$, the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal $n Z$, no V_{Cc} current will flow out of terminals nYn , and in this case there is no limit for the voltage drop across the switch, but the voltages at $n Y n$ and $n Z$ may not exceed $V_{C C}$ or $V_{E E}$.
 [2] For DIP16 packages: above $70^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $12 \mathrm{~mW} / \mathrm{K}$.

