

2A 150KHz 42V Buck DC to DC Converter

Features

- Wide 4.5V to 42V Input Voltage Range
- 3.3V,5V,12V, and adjustable versions
- Output Adjustable from 1.23V to 37V
- Maximum Duty Cycle 100%
- Minimum Drop Out 1.5V
- Fixed 150KHz Switching Frequency
- 2A Constant Output Current Capability
- Internal Optimize Power Transistor
- High efficiency
- Excellent line and load regulation
- TTL shutdown capability
- ON/OFF pin with hysteresis function
- Built in thermal shutdown function
- Built in current limit function
- Built in second current limit function
- Available in SOP8 and ESOP-8 package

Ordering Information

DEVICE	Package Type	MARKING	Packing	Packing Qty
AP1509-3.3M/TR	SOP-8	1509-3.3	REEL	2500pcs/reel
AP1509-5.0M/TR	SOP-8	1509-5.0	REEL	2500pcs/reel
AP1509-12M/TR	SOP-8	1509-12	REEL	2500pcs/reel
AP1509-ADJM/TR	SOP-8	1509-ADJ	REEL	2500pcs/reel
AP1509-3.3ME/TR	ESOP-8	1509-3.3	REEL	2500pcs/reel
AP1509-5.0ME/TR	ESOP-8	1509-5.0	REEL	2500pcs/reel
AP1509-12ME/TR	ESOP-8	1509-12	REEL	2500pcs/reel
AP1509-ADJME/TR	ESOP-8	1509-ADJ	REEL	2500pcs/reel

General Description

The AP1509 is a 150 KHz fixed frequency PWM buck (step-down) DC/DC converter, capable of driving a 2A load with high efficiency, low ripple and excellent line and load regulation. Requiring a minimum number of external components, the regulator is simple to use and include internal frequency compensation and a fixed-frequency oscillator.

The PWM control circuit is able to adjust the duty ratio linearly from 0 to 100%. An enable function, an over current protection function is built inside. When second current limit function happens, the operation frequency will be reduced from 150KHz to 50KHz. An internal compensation block is built in to minimize external component count.

Applications

- LCD Monitor and LCD TV
- Digital Photo Frame
- Set-up Box
- ADSL Modem
- Telecom / Networking Equipment

Pin Configurations

Figure 1. Pin Configuration of AP1509 (Top View)

Table 1 Pin Description

Pin Number	Pin Name	Description
		Supply Voltage Input Pin. AP1509 operates from a 4.5V to
1	VIN	42V DC voltage. Bypass Vin to GND with a suitably large capacitor to eliminate
		noise on the input.
2		Power Switch Output Pin (SW). Output is the switch node that
2	001901	supplies power to the output.
		Ground Pin. Care must be taken in layout. This pin should be placed outside of
5~8	GND	the Schottky Diode to output capacitor ground path to prevent switching current
		spikes from inducing voltage noise into AP1509.
		Feedback Pin (FB). Through an external resistor divider network, Feedback
3	FEEDBACK	senses the output voltage and regulates it.
		The feedback threshold voltage is 1.23V.
4		Enable Pin. Drive ON/OFF pin low to turn on the device, drive it high to turn it
4	UN/OFF	off. Floating is default low.

Function Block

Figure 2. Function Block Diagram of AP1509

Typical Application Circuit

Figure 3. AP1509 Typical Application Circuit 12V-5V/2A

Absolute Maximum Ratings (Note1)

Parameter	Symbol	Value	Unit
Input Voltage	Vin	-0.3 to 42	V
Feedback Pin Voltage	VFB	-0.3 to Vin	V
ON/OFF Pin Voltage	VON/OFF	-0.3 to Vin	V
Output Switch Pin Voltage	VOutput	-0.3 to Vin	V
Power Dissipation	PD	Internally limited	mW
Thermal Resistance (SOP8) (Junction to Ambient, No Heatsink, Free Air)	RJA	100	°C/W
Operating Junction Temperature	TJ	-40 to 125	°C
Storage Temperature	TSTG	-65 to 150	°C
Lead Temperature (Soldering, 10 sec)	TLEAD	245	°C
ESD (HBM)		2000	V

Note1: Stresses greater than those listed under Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

AP1509-3.3 Electrical Characteristics

Ta = 25° C;unless otherwise specified.

Symbol	Parameter Test Condition			Тур.	Max.	Unit
		System parameters test circuit figure 4				
VOUT	Output,Voltage	3.168	3.3	3.432	V	
Efficiency	ŋ	n Vin=12V ,Vout=3.3V,Iout=2A		75	-	%

AP1509-5.0 Electrical Characteristics

Ta = 25°C;unless otherwise specified.

Symbol	Parameter	Min.	Тур.	Max.	Unit	
		System parameters test circuit figure 4				
VOUT	Output,Voltage	Vin = 7V to 42V,Iload=0.2A to 2A	4.8	5	5.2	V
Efficiency	ŋ	n Vin=12V ,Vout=5V,Iout=2A		82	-	%

AP1509-12 Electrical Characteristics

Ta = 25°C;unless otherwise specified.

Symbol	Parameter	Min.	Тур.	Max.	Unit	
System parameters test circuit figure 4						
VOUT	Output,Voltage	11.52	12	12.48	V	
Efficiency	ŋ Vin=25V ,Vout=12V, lout=2A		-	90	-	%

AP1509-ADJ Electrical Characteristics

Ta – 25 C,ulliess otherwise specified	Ta =	25°C;unl	ess other	wise s	pecified
---------------------------------------	------	----------	-----------	--------	----------

Symbol	Parameter Test Condition			Тур.	Max.	Unit
System parameters test circuit figure 4						
VOUT	Output,Voltage	Vin = 4.5V to 42V,Iload=0.2A to 2A	1.193	1.23	1.267	V
Efficiency	ŋ	ŋ Vin=12V ,Vout=3V, lout=2A		74	-	%

Electrical Characteristics (DC Parameters)

Vin = 12V for the 3.3V,5V,and Adjustable versions and Vin=24V for the 12V version, GND=0V, Vin & GND parallel connect a 220uf/50V capacitor; lout=500mA, Ta = 25° C; the others floating unless otherwise specified.

Parameters	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input operation voltage	Vin		4.5		42	V
Shutdown Supply Current	ISTBY	VON/OFF=5V		80	200	uA
Quiescent Supply Current	lq	VON/OFF =0V, VFB =Vin		2	10	mA
Oscillator Frequency	Fosc		127	150	173	Khz
Switch Current Limit	IL	VFB =0		4		А
ON/OFF Pin Threshold	VON/OFF	High (Regulator OFF) Low (Regulator ON)		1.4 0.8		V
ON/OFF Pin Input Leakage	ІН	VON/OFF =2.5V (OFF)		5	15	uA
Current	IL	VON/OFF =0.5V (ON)		0.2	5	uA
Output Saturation Voltage	VCE	VFB=0V lout=2A		1.2	1.4	V
Max. Duty Cycle	DMAX	VFB=0V		100		%

Test Circuit and Layout guidelines

Figure 4. Standard Test Circuits and Layout Guides

Select R1 to be approximately 1K, use a 1% resistor for best stability.

C1 and CFF are optional; in order to increase stability and reduce the input power line noise, CIN and C1 must be placed near to PIN1 and PIN5~8;

For output voltages greater than approximately 10V, an additional capacitor CFF is required. The compensation capacitor is typically between 100 pf and 33 nf, and is wired in parallel with the output voltage setting resistor, R2. It provides additional stability for high output voltage, low input-output voltages, and/or very low ESR output capacitors, such as solid tantalum capacitors. CFF=1/(31*1000*R2); This capacitor type can be ceramic, plastic, silver mica, etc. (Because of the unstable characteristics of ceramic capacitors made with Z5U material, they are not recommended.)

AP1509 Series Buck Regulator Design Procedure (Fixed Output)

	O a se all'Al a se a		Inductor	Output Capacitor (COUT)				
	Conditions		(L1)	Through Hole	Electrolytic	Surface Mount Tantalum		
Output Voltage (V)	Load Current (A)	Max Input Voltage (V)	Inductance (uh)	Panasonic HFQ Series (uf/V)	Nichicon PL Series (uf/V)	AVX TPS Series (uf/V)	Sprague 595D Series (uf/V)	
		6	22	470/25	470/35	330/6.3	390/6.3	
3.3	2	10	33	330/35	330/35	330/6.3	390/6.3	
		42	47	330/35	270/50	220/10	330/10	
		9	22	470/25	560/16	220/10	330/10	
5	2	20	68	180/35	180/35	100/10	270/10	
		42	68	180/35	180/35	100/10	270/10	
		15	33	330/25	330/25	100/16	180/16	
12	2	20	68	180/25	180/25	100/16	120/20	
		42	150	82/25	82/25	68/20	68/25	

AP1509 Series Buck Regulator Design Procedure (Adjustable Output)

	Through Hole Output Electrolytic Surface Mount Output Capacitor					
Output Voltage (V)	Panasonic HFQ Series (uf/V)	Nichicon PL Series (uf/V)	Feedforward Capacitor	AVX TPS Series (uf/V)	Sprague 595D Series (uf/V)	Feedforward Capacitor
2	820/35	820/35	33nf	330/6.3	470/4	33nf
4	560/35	470/35	10nf	330/6.3	390/6.3	10nf
6	470/25	470/35	3.3nf	220/10	330/10	3.3nf
9	330/25	330/25	1.5nf	100/16	180/16	1.5nf
12	330/25	330/25	1nf	100/16	180/16	1nf
15	220/25	220/35	680pf	68/20	120/20	680pf
24	220/35	150/35	560pf	33/25	33/25	220pf
28	100/50	100/50	390pf	10/35	15/50	220pf

Schottky Diode Selection Table

Current	Surface Mount	Through Hole	VR (The same as system maximum input voltage)					
			20V	30V	40V	50V	60V	
1A		\checkmark	1N5817	1N5818	1N5819			
		\checkmark	1N5820	1N5821	1N5822			
		\checkmark	MBR320	MBR330	MBR340	MBR350	MBR360	
	\checkmark		SK32	SK33	SK34	SK35	SK36	
3A	\checkmark			30WQ03	30WQ04	30WQ05		
		\checkmark		31DQ03	31DQ04	31DQ05		
		\checkmark	SR302	SR303	SR304	SR305	SR306	

Typical System Application for 3.3V Version

Figure 5. AP1509-3.3 System Parameters Test Circuit

Typical System Application for 5V Version

Figure 6. AP1509-5.0 System Parameters Test Circuit

Typical System Application for 12V Version

Figure 7. AP1509-12 System Parameters Test Circuit

Typical System Application for ADJ Version

Physical Dimensions

SOP-8 (150mil)

Dimensions In Millimeters(SOP-8)										
Symbol:	А	A1	В	С	C1	D	Q	а	b	
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	4.07.000	
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.27 BSC	

Q

0.25

A

ESOP-8

Dimensions In Millimeters(ESOP-8)											
Symbol:	A	A1	В	С	C1	D	D1	E	Q	а	b
Min:	1.35	0.05	4.90	5.80	3.80	0.40	3.20	2.31	0°	0.35	1 07 000
Max:	1.55	0.20	5.10	6.20	4.00	0.80	3.40	2.51	8°	0.45	1.27 030

Revision History

DATE	REVISION	PAGE
2021-9-5	New	1-13
2023-7-21	Update Lead Temperature	5

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: Select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Huaguan Semiconductor, and the user shall not claim any compensation liability against Huaguan Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Controllers category:

Click to view products by HGSEMI manufacturer:

Other Similar products are found below :

NCP1218AD65R2G_NCP1244BD065R2G_NCP1336ADR2G_NCP6153MNTWG_NCP81101BMNTXG_NCP81205MNTXG_SJE6600 AZ7500BMTR-E1_SG3845DM_NCP1250BP65G_NCP4204MNTXG_NCP6132AMNR2G_NCP81102MNTXG_NCP81206MNTXG NCP1240AD065R2G_NCP1240FD065R2G_NCP1361BABAYSNT1G_NCP1230P100G_NX2124CSTR_SG2845M_NCP1366BABAYDR2G NCP81101MNTXG_NCP81174NMNTXG_NCP4308DMTTWG_NCP4308AMTTWG_NCP1366AABAYDR2G_NCP1251FSN65T1G NCP1246BLD065R2G_MB39A136PFT-G-BND-ERE1_NCP1256BSN100T1G_LV5768V-A-TLM-E_NCP1365BABCYDR2G NCP1365AABCYDR2G_NCP1246ALD065R2G_AZ494AP-E1_CR1510-10_NCP4205MNTXG_XRP6141ELTR-F_RY8017_LP6260SQVF LP6298QVF_ISL6121LIB_ISL6225CA_ISL6244HRZ_ISL6268CAZ_ISL6315IRZ_ISL6420AIAZ-TK_ISL6420AIRZ_ISL6420IAZ_ISL64