CD4538 Dual Precision Monostable

General Description

The CD4538BC is a dual, precision monostable multivibrator with independent trigger and reset controls. The device is retriggerable and resettable, and the control inputs are internally latched. Two trigger inputs are provided to allow either rising or falling edge triggering. The reset inputs are active LOW and prevent triggering while active. Precise control of output pulse-width has been achieved using linear CMOS techniques. The pulse duration and accuracy are determined by external components R_{X} and C_{X}. The device does not allow the timing capacitor to discharge through the timing pin on power-down condition. For this reason, no external protection resistor is required in series with the timing pin. Input protection from static discharge is provided on all pins.

Features

- Wide supply voltage range: 3.0 V to 15 V
- High noise immunity: $0.45 \mathrm{~V}_{\mathrm{CC}}$ (typ.)

■ Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS
■ New formula: $\mathrm{PW}_{\text {OUT }}=\mathrm{RC}$ (PW in seconds, R in Ohms, C in Farads)
$\pm \pm 1.0 \%$ pulse-width variation from part to part (typ.)
■ Wide pulse-width range: $1 \mu \mathrm{~s}$ to ∞
■ Separate latched reset inputs

- Symmetrical output sink and source capability

■ Low standby current: 5 nA (typ.) @ $5 \mathrm{~V}_{\mathrm{DC}}$
■ Pin compatible to CD4528BC

Ordering Code:

Order Number	Package Number	Package Description
CD4538BCM	M16A	$16-$ Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
CD4538BCWM	M16B	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body
CD4538BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.		

Connection Diagram

Pin Assignments for DIP and SOIC

Top View

Truth Table

Inputs			Outputs	
Clear	A	B	Q	Q
L	X	X	L	H
X	H	X	L	H
X	X	L	L	H
H	L	\downarrow	Ω	U
H	\uparrow	H	Ω	U

H = HIGH Level
L = LOW Level
$\uparrow=$ Transition from LOW-to-HIGH
\downarrow = Transition from HIGH-to-LOW
$\Omega=$ One HIGH Level Pulse
บ = One LOW Level Pulse
X = Irrelevant

Block Diagram

R_{X} and C_{X} are External Components
$V_{D D}=\operatorname{Pin} 16$
$V_{S S}=\operatorname{Pin} 8$

Logic Diagram

Theory of Operation

Trigger Operation

The block diagram of the CD4538BC is shown in Figure 1, with circuit operation following.
As shown in Figure 1 and Figure 2, before an input trigger occurs, the monostable is in the quiescent state with the Q output low, and the timing capacitor C_{X} completely charged to $V_{D D}$. When the trigger input A goes from $V_{S S}$ to $V_{D D}$ (while inputs B and C_{D} are held to $V_{D D}$) a valid trigger is recognized, which turns on comparator C 1 and N -Channel transistor $\mathrm{N} 1^{(1)}$. At the same time the output latch is set. With transistor N 1 on, the capacitor C_{X} rapidly discharges toward V_{SS} until $\mathrm{V}_{\text {REF } 1}$ is reached. At this point the output of comparator C 1 changes state and transistor N 1 turns off. Comparator C 1 then turns off while at the same time comparator C 2 turns on. With transistor N 1 off, the capacitor C_{X} begins to charge through the timing resistor, R_{X}, toward $V_{D D}$. When the voltage across C_{X} equals $V_{R E F 2}$, comparator C 2 changes state causing the output latch to reset (Q goes low) while at the same time disabling comparator C2. This ends the timing cycle with the monostable in the quiescent state, waiting for the next trigger.
A valid trigger is also recognized when trigger input B goes from $V_{D D}$ to $V_{S S}$ (while input A is at $V_{S S}$ and input C_{D} is at $\left.V_{D D}\right)^{(2)}$.
It should be noted that in the quiescent state C_{X} is fully charged to $V_{D D}$, causing the current through resistor R_{X} to be zero. Both comparators are "off" with the total device current due only to reverse junction leakages. An added feature of the CD4538BC is that the output latch is set via the input trigger without regard to the capacitor voltage.

Thus, propagation delay from trigger to Q is independent of the value of $\mathrm{C}_{\mathrm{X}}, \mathrm{R}_{\mathrm{X}}$, or the duty cycle of the input waveform.

Retrigger Operation

The CD4538BC is retriggered if a valid trigger occurs ${ }^{(3)}$ followed by another valid trigger ${ }^{(4)}$ before the Q output has returned to the quiescent (zero) state. Any retrigger, after the timing node voltage at pin 2 or 14 has begun to rise from $\mathrm{V}_{\text {REF1 } 1}$, but has not yet reached $\mathrm{V}_{\text {REF2 }}$, will cause an increase in output pulse width T . When a valid retrigger is initiated ${ }^{(4)}$, the voltage at $T 2$ will again drop to $\mathrm{V}_{\text {REF } 1}$ before progressing along the $R C$ charging curve toward $V_{D D}$. The Q output will remain high until time T , after the last valid retrigger.

Reset Operation

The CD4538BC may be reset during the generation of the output pulse. In the reset mode of operation, an input pulse on C_{D} sets the reset latch and causes the capacitor to be fast charged to V_{DD} by turning on transistor $\mathrm{Q} 1^{(5)}$. When the voltage on the capacitor reaches $\mathrm{V}_{\text {REF2 }}$, the reset latch will clear and then be ready to accept another pulse. If the C_{D} input is held low, any trigger inputs that occur will be inhibited and the Q and $\overline{\mathrm{Q}}$ outputs of the output latch will not change. Since the Q output is reset when an input low level is detected on the C_{D} input, the output pulse T can be made significantly shorter than the minimum pulse width specification.

CD4538

FIGURE 4. Non-Retriggerable Monostables Circuitry

FIGURE 5. Connection of Unused Sections

Absolute Maximum Ratings(Note 1)
 (Note 2)

DC Supply Voltage (V_{DD})	-0.5 to $+18 \mathrm{~V}_{\mathrm{DC}}$
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}_{\mathrm{DC}}$
Storage Temperature Range ($\left.\mathrm{T}_{\mathrm{S}}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (P_{D})	
\quad Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature ($\left.\mathrm{T}_{\mathrm{L}}\right)$	
\quad (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$

Recommended Operating Conditions (Note 2)

DC Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$	3 to $15 \mathrm{~V}_{\mathrm{DC}}$
Input Voltage $\left(\mathrm{V}_{\text {IN }}\right)$	0 to $\mathrm{V}_{\mathrm{DD}} \mathrm{V}_{\mathrm{DC}}$
Operating Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation
Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.

DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
I_{DD}	Quiescent Device Current	$\begin{array}{ll} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} & \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} & \text { All Outputs Open } \end{array}$		$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$		$\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$		$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
V_{OL}	LOW Level Output Voltage	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} & \mid \mathrm{I}_{\mathrm{O}}<1 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} & \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} & \\ \hline \end{array}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	HIGH Level Output Voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} & \mid \mathrm{I}_{\mathrm{O}}<1 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} & \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} & \end{array}$	$\begin{array}{c\|} \hline 4.95 \\ 9.95 \\ 14.95 \end{array}$		$\begin{array}{c\|} \hline 4.95 \\ 9.95 \\ 14.95 \end{array}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$		$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	$\begin{aligned} & \mid \mathrm{I}_{\mathrm{O}}<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{IH}	HIGH Level Input Voltage	$\begin{aligned} & \mid \mathrm{I}_{\mathrm{O}}<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
I_{OL}	LOW Level Output Current (Note 3)	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} & \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}} \\ \mathrm{~V}_{\mathrm{D}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} & \end{array}$	$\begin{gathered} \hline 0.52 \\ 1.3 \\ 3.6 \end{gathered}$		$\begin{gathered} \hline 0.44 \\ 1.1 \\ 3.0 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$		$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
I_{OH}	HIGH Level Output Current (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{D}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline-0.52 \\ -1.3 \\ -3.6 \end{gathered}$		$\begin{gathered} \hline-0.44 \\ -1.1 \\ -3.0 \end{gathered}$	$\begin{array}{\|c\|} \hline-0.88 \\ -2.25 \\ -8.8 \end{array}$		$\begin{gathered} \hline-0.36 \\ -0.9 \\ -2.4 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
I_{IN}	Input Current, Pin 2 or 14	$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 15 V		± 0.02		$\pm 10^{-5}$	± 0.05		± 0.5	$\mu \mathrm{A}$
I_{IN}	Input Current Other Inputs	$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 15 V		± 0.3		$\pm 10^{-5}$	± 0.3		± 1.0	$\mu \mathrm{A}$

AC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {TLH }}, \mathrm{t}_{\text {THL }}$	Output Transition Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns ns ns
$\overline{t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}}$	Propagation Delay Time	Trigger Operation- A or B to Q or \bar{Q} $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$ Reset Operation- C_{D} to Q or \bar{Q} $\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 300 \\ & 150 \\ & 100 \\ & \\ & 250 \\ & 125 \\ & 95 \end{aligned}$	$\begin{aligned} & 600 \\ & 300 \\ & 220 \\ & \\ & 500 \\ & 250 \\ & 190 \end{aligned}$	ns ns ns ns ns ns
$t_{\text {WL }}, t_{\text {WH }}$	Minimum Input Pulse Width A, B, or C_{D}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 35 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \\ & 50 \end{aligned}$	ns ns ns
$t_{R R}$	Minimum Retrigger Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		0	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	ns ns ns
C_{IN}	Input Capacitance	Pin 2 or 14 Other Inputs		$\begin{gathered} 10 \\ 5 \end{gathered}$	7.5	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
PW ${ }_{\text {OUT }}$	Output Pulse Width (Q or $\overline{\mathrm{Q}}$) (Note: For Typical Distribution, see Figure 6)	$\mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega$ $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ $\mathrm{C}_{\mathrm{X}}=0.002 \mu \mathrm{~F}$ $\mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}$	$\begin{aligned} & 208 \\ & 211 \\ & 216 \end{aligned}$	$\begin{aligned} & 226 \\ & 230 \\ & 235 \end{aligned}$	$\begin{aligned} & 244 \\ & 248 \\ & 254 \end{aligned}$	$\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega$ $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ $\mathrm{C}_{\mathrm{X}}=0.1 \mu \mathrm{~F}$ $\mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}$	$\begin{aligned} & \hline 8.83 \\ & 9.02 \\ & 9.20 \end{aligned}$	$\begin{gathered} 9.60 \\ 9.80 \\ 10.00 \end{gathered}$	$\begin{aligned} & 10.37 \\ & 10.59 \\ & 10.80 \end{aligned}$	ms ms ms
		$\mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega$ $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ $\mathrm{C}_{\mathrm{X}}=10.0 \mu \mathrm{~F}$ $\mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}$	$\begin{aligned} & \hline 0.87 \\ & 0.89 \\ & 0.91 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.97 \\ & 0.99 \end{aligned}$	$\begin{aligned} & 1.03 \\ & 1.05 \\ & 1.07 \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$
Pulse Width Match between Circuits in the Same Package $C_{X}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega$		$\begin{array}{ll} \hline \mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{X}}=0.1 \mu \mathrm{~F} & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{array}$		$\begin{aligned} & \pm 1 \\ & \pm 1 \\ & \pm 1 \end{aligned}$		$\begin{aligned} & \hline \% \\ & \% \\ & \% \end{aligned}$
Operating Conditions						
$\begin{aligned} & \hline \mathrm{R}_{\mathrm{X}} \\ & \mathrm{C}_{\mathrm{X}} \end{aligned}$	External Timing Resistance External Timing Capacitance		$\begin{gathered} 5.0 \\ 0 \end{gathered}$		(Note 5) No Limit	k Ω pF

Note 5: The maximum usable resistance R_{X} is a function of the leakage of the Capacitor C_{X}, leakage of the CD4538BC, and leakage due to board layout, surface resistance, etc.

Typical Applications

FIGURE 6. Typical Normalized Distribution of Units for Output Pulse Width

FIGURE 7. Typical Pulse Width Variation as a Function of Supply Voltage $V_{D D}$

OUTPUT DUTY CYCLE (\%)
FIGURE 8. Typical Total Supply Current Versus Output Duty Cycle, $\mathrm{R}_{\mathrm{X}}=100 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, $C_{x}=100 \mathrm{pF}$, One Monostable Switching Only

 Versus Temperature
 FIGURE 10. Typical Pulse Width Error Versus Temperature

timing rc product
FIGURE 11. Typical Pulse Width Versus Timing RC Product

Test Circuits and Waveforms

FIGURE 13. Switching Test Circuit

$R_{X}=R_{X}{ }^{\prime}=100 \mathrm{k} \Omega$
$C_{X}=C_{X^{\prime}}=100 \mathrm{pF}$
$\mathrm{C}_{1}=\mathrm{C}_{2}=0.1 \mu \mathrm{~F}$

FIGURE 14. Power Dissipation Test Circuit and Waveforms

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip Flops category:
Click to view products by HGSEMI manufacturer:
Other Similar products are found below :
5962-8955201EA MC74HC11ADTG MC10EP29MNG MC74HC11ADTR2G NLV14013BDTR2G NLV14027BDG NLX1G74MUTCG 703557B 746431H 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA M38510/06102BFA M38510/06101B2A NLV74HC74ADR2G TC4013BP(N,F) NLV14013BDG NLV74AC32DR2G NLV74AC74DR2G MC74HC73ADG CY74FCT16374CTPACT MC74HC11ADR2G 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74ALVCH162374PAG TC7WZ74FK,LJ(CT CD54HCT273F HMC853LC3TR HMC723LC3CTR MM74HCT574MTCX MM74HCT273WM SN74LVC74APW SN74LVC74AD MC74HC73ADTR2G MC74HC11ADG SN74ALVTH16374GR M74HCT273B1R M74HC377RM13TR M74HC374RM13TR M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74AUP1G74DC,125 74VHC374FT(BJ) 74VHC9273FT(BJ) NLV14013BCPG

