CD4543BM/CD4543BC BCD-to-7-Segment Latch/Decoder/Driver for Liquid Crystals

General Description

The CD4543BM/CD4543BC is a monolithic CMOS BCD-to-7-segment latch/decoder/driver for use with liquid crystal and other types of displays. The circuit provides the functions of a 4-bit storage latch and an 8421 BCD-to-7-segment decoder and driver. The device has the capability to invert the logic levels of the output combination. The phase (Ph), blanking (BI) and latch disable (LD) inputs are used to reverse the truth table phase, blank the display, and store a BCD code, respectively. For liquid crystal (LC) readouts, a square wave is applied to the Ph input of the circuit and the electrically common backplane of the display, and the outputs of the circuit are connected directly to the segments of the LC readout. For other types of readouts, such as lightemitting diode (LED), incandescent, gas discharge, and fluorescent readouts, connection diagrams are given on this data sheet.
All inputs are protected against static discharge by diode clamps to $V_{D D}$ and $V_{S S}$.

Features

- Wide supply voltage range
- High noise immunity
- Low power TTL compatibility
- Low power dissipation
- Latch storage
- Blanking input
- Blank for all illegal inputs
- Direct-drive LCD, LED and VF displays
- Pin-for-pin replacement for CD4056B (with pin 7 tied to V_{SS})
- Pin-for-pin replacement for Motorola MC14543B

Applications

- Instrument (e.g., counter, DVM, etc.) display driver
- Computer/calculator display driver
- Cockput display driver
- Various clock, watch, and timer users
3.0 V to 18 V
0.45 VDD (typ.)

Fan out of 2 driving 74L
or 1 driving 74LS
50 nA/package (typ.)
at $V_{D D}=5.0 \mathrm{~V}$

Connection Diagram and Truth Table

Top Vlew
Order Number CD4543B*
*Please look into Section 8, Appendix D for availability of various package types.

Inputs							Outputs							
LD	BI	Ph*		$C \mathrm{~B}$	B	A	a	b	c	d	e	1	g	Display
\times	1	0	x	$\times \times$	\times	X	0	0	0	0	0	0	0	Blank
1	0	0	0	00	0	0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1	0	1	1	0	0	0	0	1
1	0	0	0	0	1	0	1	1	0	1	1	0	1	2
1	0	0	0	01	1	1	1	1	1	1	0	0	1	3
1	0	0	0	10	0	0	0	1	1	0	0	1	1	4
1	0	0	0	10	0	1	1	0	1	1	0	1	1	5
1	0	0	0	11	1	0	1	0	1	1	1	1	1	6
1	0	0	0	11	1	1	1	1	1	0	0	0	0	7
1	0	0	1	0		0	1	,	1	1	1	1	1	8
1	0	0	1	0	0	1	1	1	1	1	0	1	1	9
1	0	0	1	01	1	0	0	0	0	0	0	0	0	Blank
1	0	0	1	01	1	1	0	0	0	0	0	0	0	Blank
1	0	0	1	10	0	0	0	0	0	0	0	0	0	Blank
1	0	0	1	10	0	1	0	0	0	0	0	0	0	Blank
1	0	0	\dagger	1	1	0	0	0	0	0	0	0	0	Blank
1	0	0	1	1	1	1	0	0	0	0	0	0	0	Blank
0	0	0	X	$\times \times$	X	X				**				**
\dagger	\dagger	1		†				$\begin{aligned} & \text { arse } \\ & \text { nbin } \end{aligned}$	$f \mathrm{Ol}$	Aput				Display as Above

X = Don't care
$\dagger=$ Above combinations

* = For tiquid crystal readouts, apply a square wave to Ph. For common cathode LED readouts, select $\mathrm{Ph}=0$. For common anode LED readouts, select $\mathrm{Ph}=1$.
** = Depends upon the BCD code previously applied when LD $=1$.

Display Format

HuaGuan Semiconductor

Absolute Maximum Ratings (Notes 1 \& 2) If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for avallability and specifications.
DC Supply Voltage (VDD)
$-0.5 V_{D C}$ to $+18 V_{D C}$ Input Voltage (V_{IN})
Storage Temp. Range (T_{s})
Power Dissipation (PD_{D})
Dual-In-Line 700 mW
Small Outline
$-0.5 V_{D C}$ to $V_{D D}+0.5 V_{D C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Lead Temperature (T_{L})
(Soldering, 10 seconds)

Recommended Operating Conditions (Note 2)
DC Supply Voltage (V_{DD}) Input Voltage ($V_{I N}$) $\quad 0 V_{D C}$ to $V_{D D} V_{D C}$
Operating Temperature Range (T_{A}) CD4543BM
CD4543BC
$3 V_{D C}$ to $15 V_{D C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

DC Electrical Characteristics CD4543вм (Note 2)

Symbol	Parameter	Conditions	$-55^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			+ $125^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
IOD	Quiescent Device Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{I N}=V_{D D} \text { or } V_{S S} \\ & V_{D D}=10 \mathrm{~V}, V_{I N}=V_{D D} \text { or } V_{S S} \\ & V_{D D}=15 \mathrm{~V}, V_{I N}=V_{D D} \text { or } V_{S S} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 5 \\ 10 \\ 20 \\ \hline \end{gathered}$			$\begin{gathered} 5 \\ 10 \\ 20 \\ \hline \end{gathered}$		$\begin{aligned} & 150 \\ & 300 \\ & 600 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \left.\begin{array}{l} V_{D D}=5 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V} \end{array}\right\} \quad\left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A}, \\ & \hline \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
V_{OH}	High Level Output Voltage	$\begin{aligned} & \left.\begin{array}{l} V_{D D}=5 V \\ V_{D D}=10 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V} \end{array}\right\} \quad\|\mathrm{IO}\|<1 \mu \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ 15 \\ \hline \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{gathered}$		$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V} \text { or } 9 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
$V_{\text {IH }}$	High Level Input Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V} \text { or } 9 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{gathered}$		$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$			$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
${ }_{\mathrm{IOL}}$	Low Level Output Current (Note 3)	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{O}=0.4 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \\ \hline \end{gathered}$		$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \\ \hline \end{gathered}$			$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
${ }^{\mathrm{IOH}}$	High Level Output Current (Note 3)	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{O}=4.6 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=9.5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.64 \\ -1.6 \\ -4.2 \\ \hline \end{gathered}$		$\begin{gathered} -0.51 \\ -1.3 \\ -3.4 \\ \hline \end{gathered}$			$\begin{gathered} -0.36 \\ -0.9 \\ -2.4 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\underline{1 N}$	Input Current	$\begin{aligned} & V_{O D}=15 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{I N}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} -0.1 \\ 0.1 \end{gathered}$		$\begin{gathered} -10^{-5} \\ 10^{-5} \end{gathered}$	$\begin{gathered} -0.1 \\ 0.1 \end{gathered}$		$\begin{gathered} -1.0 \\ 1.0 \end{gathered}$	${ }_{\mu A}^{\mu A}$

DC Electrical Characteristics CD4543BC (Note 2)

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
I_{DD}	Quiescent Device Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{I N}=V_{D D} \text { or } V_{S S} \\ & V_{D D}=10 \mathrm{~V}, V_{I N}=V_{D D} \text { or } V_{S S} \\ & V_{D D}=15 \mathrm{~V}, V_{I N}=V_{D D} \text { or } V_{S S} \end{aligned}$		$\begin{aligned} & 20 \\ & 40 \\ & 80 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 40 \\ & 80 \\ & \hline \end{aligned}$		$\begin{aligned} & 150 \\ & 300 \\ & 600 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \left.\begin{array}{l} V_{D D}=5 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V} \end{array}\right\} \quad\|\|O\|<1 \mu \mathrm{~A}, ~ \\ & \hline \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0.05 0.05 0.05		0.05 0.05 0.05	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
V_{OH}	High Level Output Voltage	$\left.\begin{array}{l} V_{D D}=5 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V} \end{array}\right\} \quad \mid l o l<1 \mu \mathrm{~A}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{gathered} \hline 5 \\ 10 \\ 15 \\ \hline \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{v} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{O}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{O}=1 \mathrm{~V} \text { or } 9 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	V V V
V_{IH}	High Level Input Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{O}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=1 \mathrm{~V} \text { or } 9 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{O}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$	$\begin{array}{r} \hline 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{array}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{gathered}$			$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{gathered}$		$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
l_{OL}	Low Level Output Current (Note 3)	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & V_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0.52 \\ & 1.3 \\ & 3.6 \\ & \hline \end{aligned}$		$\begin{gathered} \hline 0.44 \\ 1.1 \\ 3.0 \\ \hline \end{gathered}$			$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$

DC Electrical Characteristics CD4543BC (Note 2) (Continued)

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$		+25 ${ }^{\circ}$			$+85^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
${ }^{\mathrm{IOH}}$	High Level Output Current (Note 3)	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.52 \\ -1.3 \\ -3.6 \\ \hline \end{gathered}$		$\begin{gathered} \hline-0.44 \\ -1.1 \\ -3.0 \\ \hline \end{gathered}$			$\begin{array}{r} \hline-0.36 \\ -0.9 \\ -2.4 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
l N	Input Current	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{I N}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathbb{N}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} -0.3 \\ 0.3 \end{gathered}$		$\begin{gathered} -10^{-5} \\ 10^{-5} \end{gathered}$	$\begin{gathered} -0.3 \\ 0.3 \end{gathered}$		$\begin{gathered} -1.0 \\ 1.0 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$

AC Electrical Characteristics* $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{SS}}=0$, unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
t_{r}	Output Rise Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 100 \\ 50 \\ 40 \\ \hline \end{gathered}$	$\begin{aligned} & 200 \\ & 100 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
t_{f}	Output Fall Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$t_{\text {PLH }}$	Turn-ON Propagation Delay Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 450 \\ & 170 \\ & 110 \\ & \hline \end{aligned}$	$\begin{gathered} 1100 \\ 440 \\ 330 \\ \hline \end{gathered}$	ns ns ns
$\mathrm{t}_{\text {PHL }}$	Turn-OFF Propagation Delay Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 500 \\ & 180 \\ & 120 \end{aligned}$	$\begin{gathered} 1100 \\ 440 \\ 330 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \text { ns } \\ & \text { ns } \end{aligned}$
${ }^{\text {tSET-UP }}$	Set-Up Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} -5 \\ -2 \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & 80 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	ns ns ns
$\mathrm{thold}^{\text {d }}$	Hold Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 30 \\ & 20 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 120 \\ 45 \\ 30 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
PW ${ }_{\text {LD }}$	Latch Disable Pulse Width	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 50 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{gathered} 250 \\ 100 \\ 80 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
C_{IN}	Input Capacitance	Per Input		5	7.5	pF
CPD	Power Dissipation Capacitance	See $\mathrm{C}_{\text {PD }}$ Measurement Waveforms (Note 4)		300		pF

*AC Parameters are guaranteed by DC correlated testing.
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and Electrical Characteristics" provide conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=\mathrm{OV}$ unless otherwise specified.
Note 3: I_{OH} and l_{OL} are tested one output at a time.
Note 4: CPD determines the no load AC power consumption of a CMOS device. For a complete explanation, see "MM54C/74C Family Characteristics" Application Note AN-90.

Logic Diagram

Typical Applications

Light Emitting Diode (LED) Readout

Note: Bipolar transitors may be added for gain (for $V_{D D} \leq 10 \mathrm{~V}$ or IOUT $\geq 10 \mathrm{~mA}$)

Typical Applications (Continued)

31⁄2-Digit DVM with LCD Display

[^0]
Switching Time Waveforms

ANY OUTPUT

Inputs 81 and Ph low, and inputs D and LD high. f in respect to a system clock.
All outputs connected to respective C_{L} loads.

Dynamic SIgnal Waveforms

(a) Inputs D, Ph and BI Low, and Inputs A, B and LD High

(b) (Inputs D, Ph and BI Low, and Inputs A and B High

(c) Data DCBA Strobe into Latches

Important statement:
Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LCD Drivers category:
Click to view products by HGSEMI manufacturer:
Other Similar products are found below :
874390R NJU6432BFH1 LC75821WHS-E LC75827W-E LC75827WS-E LC75829PE-H LC75832WS-TBM-E LC75836WH-E LC75874WHS-SH-E LC75890W-NH LC75897PW-E LC75829PEH-TLA-H LC75829PW-H LC75832E-E LC75832W-E LC75835W-TBME LC75852W-E LC75853NEHS-E LC75874W-E LC79430KNE-E LC79431KNE-E FAN7317BMX MAX8795AGCJ/V+ MAX16929AGUI/V+ MAX16929DGUI/V+ PCF8578T/1,112 PCF8533U/2/F2,026 LC75839PW-H LC75853NW-E MAX16928BGUP/V+ LC75884W-E LC75832EH-E LC75890W-2H LC75847T-E LC75832WS-E LC75814VS-TLM-E MAX8726EUE+ MAX8570ELT+T FP7720FE9 TPS65132T6YFFT TPS65132WRVCT BU97501KV-E2 BU9795AFV-E2 BU9799KV-E2 ICL7136CMH+D ICM7211AMIQH+TD ICL7116CQH+D AP5727WG-7 FAN7318AMX BD8153EFV-E2

[^0]: Display 9.999 when overflowed. All digits can also be blanked at overflow by typing OFL to BI on the CD4543's.

