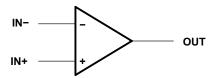


Quadruple Operational Amplifiers

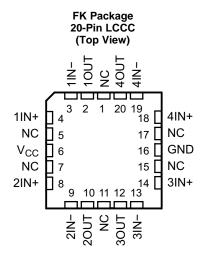
1 Features

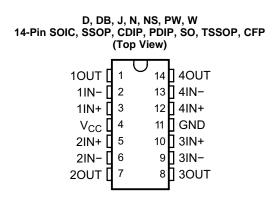
- 2-kV ESD Protection for:
 - LM224K, LM224KA
 - LM324K, LM324KA
 - LM2902K, LM2902KV, LM2902KAV
- Wide Supply Ranges
 - Single Supply: 3 V to 32 V (26 V for LM2902)
 - Dual Supplies: ±1.5 V to ±16 V (±13 V for LM2902)
- Low Supply-Current Drain Independent of Supply Voltage: 0.8 mA Typical
- Common-Mode Input Voltage Range Includes Ground, Allowing Direct Sensing Near Ground
- · Low Input Bias and Offset Parameters
 - Input Offset Voltage: 3 mV Typical
 A Versions: 2 mV Typical
 - Input Offset Current: 2 nA Typical
 - Input Bias Current: 20 nA Typical
 A Versions: 15 nA Typical
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage: 32 V (26 V for LM2902)
- Open-Loop Differential Voltage Amplification: 100 V/mV Typical
- Internal Frequency Compensation
- On Products Compliant to MIL-PRF-38535, All Parameters are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters.


2 Applications

- Blu-ray Players and Home Theaters
- Chemical and Gas Sensors
- · DVD Recorders and Players
- Digital Multimeter: Bench and Systems
- Digital Multimeter: Handhelds
- Field Transmitter: Temperature Sensors
- Motor Control: AC Induction, Brushed DC, Brushless DC, High-Voltage, Low-Voltage, Permanent Magnet, and Stepper Motor
- Oscilloscopes
- TV: LCD and Digital
- Temperature Sensors or Controllers Using Modbus
- Weigh Scales

3 Description


These devices consist of four independent high-gain frequency-compensated operational amplifiers that are designed specifically to operate from a single supply or split supply over a wide range of voltages.


Symbol (Each Amplifier)

4 Pin Configuration and Functions

Pin Functions

	PIN			
NAME	LCCC NO.	SOIC, SSOP, CDIP, PDIP, SO, TSSOP, CFP NO.	I/O	DESCRIPTION
1IN-	3	2	I	Negative input
1IN+	4	3	I	Positive input
1OUT	2	1	0	Output
2IN-	9	6	I	Negative input
2IN+	8	5	I	Positive input
2OUT	10	7	0	Output
3IN-	13	9	I	Negative input
3IN+	14	10	I	Positive input
3OUT	12	8	0	Output
4IN-	19	13	I	Negative input
4IN+	18	12	I	Positive input
4OUT	20	14	0	Output
GND	16	11	_	Ground
	1			
	5			
NC	7			Do not connect
NC	11	_	_	Do not connect
	15			
	17			
V _{CC}	6	4	_	Power supply

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		LM2902		LMx24, LMx24xx, LM2902xx,	UNIT	
		MIN	MAX	MIN	MAX	
Supply voltage, V _{CC} ⁽²⁾	±13	26	±16	32	V	
Differential input voltage, V _{ID} ⁽³⁾		±26		±32	V	
Input voltage, V _I (either input)	-0.3	26	-0.3	to 32	V	
Duration of output short circuit (one amp below) $T_A = 25$ °C, $V_{CC} \le 15$ V ⁽⁴⁾	Unlir	nited	Unlir	mited		
Operating virtual junction temperature, T	J		150		150	°C
Case temperature for 60 seconds	FK package				260	°C
Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds	J or W package		300		300	°C
Storage temperature, T _{stg}	-65	150	-65	150	°C	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

			VALUE	UNIT
LM224K	K, LM224KA, LM324K, LM32	4KA, LM2902K, LM2902KV, LM2902KAV		
V	Clastrostatia diasharas	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)		
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101	±1000	V
LM124,	LM124A, LM224, LM224A, L	.M324, LM324A, LM2902, LM2902V		
V	Clastrostatia diasharas	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±500	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		LM2	LM2902		LMx24, LMx24x, LMx24xx, LM2902x, LM2902xx, LM2902xxx		
		MIN MAX M		MIN	MAX		
V _{CC} Supply voltage		3	26	3	30	V	
V _{CM} Common-mode voltage		0	V _{CC} – 2	0	V _{CC} – 2	V	
	LM124			-55	125		
T _A Operating free air	LM2904	-40	125			00	
temperature	LM324			0	70	°C	
	LM224			-25	85		

²⁾ All voltage values (except differential voltages and V_{CC} specified for the measurement of I_{OS}) are with respect to the network GND.

⁽³⁾ Differential voltages are at IN+, with respect to IN-.

⁽⁴⁾ Short circuits from outputs to VCC can cause excessive heating and eventual destruction.

5.4 Thermal Information

			L	.Mx24, LM2	902					
THERMAL METRIC ⁽¹⁾		D (SOIC)	DB (SSOP)	N (PDIP)	NS (SO)	PW (TSSOP)	FK (LCCC)	J (CDIP)	W (CFP)	UNIT
		14 PINS	14 PINS	14 PINS	14 PINS	14 PINS	20 PINS	14 PINS	14 PINS	
R _{0JA} (2)(3)	Junction-to- ambient thermal resistance	86	86	80	76	113	_	_	_	2000
R _{0JC} (4)	Junction-to-case (top) thermal resistance	_	_	_	_	_	5.61	15.05	14.65	°C/W

- For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
- Short circuits from outputs to VCC can cause excessive heating and eventual destruction.
- Maximum power dissipation is a function of $T_{J(max)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} T_A)/R_{\theta JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. Maximum power dissipation is a function of $T_{J(max)}$, $R_{\theta JA}$, and T_C . The maximum allowable power dissipation at any allowable case temperature is $P_D = (T_{J(max)} T_C)/R_{\theta JC}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

5.5 Electrical Characteristics for LMx24 and LM324K

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

PARAMETER		TEST COMPITIONS(1)		T _A ⁽²⁾	LM1	LM124, LM224		LM3	24, LM324K		UNIT
	PARAMETER	TEST CONDITIONS ⁽¹⁾		I _A (-/	MIN	TYP ⁽³⁾	MAX	MIN	TYP ⁽³⁾	MAX	UNII
V _{IO}	Input offset voltage	V _{CC} = 5 V to MAX,	V _{IC} = V _{ICR} min,	25°C		3	5		3	7	mV
VIO	input onset voltage	V _O = 1.4 V		Full range			7			9	IIIV
	Input offset current	V _O = 1.4 V		25°C		2	30		2	50	nA
I _{IO}	input onset current	V _O = 1.4 V		Full range			100			150	IIA
I _{IB}	Input bias current	V _O = 1.4 V		25°C		-20	-150		-20	-250	nA
ЧВ	input bias current	V ₀ = 1.4 V		Full range			-300			-500	ПА
V _{ICR}	Common-mode input voltage range	V _{CC} = 5 V to MAX		25°C	0 to V _{CC} – 1.5			0 to V _{CC} – 1.5			v
VICR	Common-mode input voltage range	VCC = 3 V to WAX		Full range	0 to V _{CC} - 2			$V_{CC} - 2$			v
		$R_L = 2 k\Omega$		25°C	V _{CC} - 1.5			V _{CC} - 1.5			
V _{OH}	High-level output voltage	$R_L = 10 \text{ k}\Omega$		25°C							V
VOH	riigii-iever output voitage	V _{CC} = MAX	$R_L = 2 k\Omega$	Full range	26			26			V
		VCC - IVIAX	R _L ≥ 10 kΩ	Full range	27	28		27	28		
V _{OL}	Low-level output voltage	R _L ≤ 10 kΩ		Full range		5	20		5	20	mV
A _{VD}	Large-signal differential voltage	V _{CC} = 15 V, V _O = 1	V to 11 V,	25°C	50	100		25	100		V/mV
AVD	amplification	R _L ≥ 2 kΩ		Full range	25			15			V/IIIV
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$		25°C	70	80		65	80		dB
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{CC}/\Delta VIO)$			25°C	65	100		65	100		dB
V_{O1}/V_{O2}	Crosstalk attenuation	f = 1 kHz to 20 kHz	<u>z</u>	25°C		120			120		dB
		V _{CC} = 15 V,		25°C	-20	-30	-60	-20	-30	-60	
		$V_{ID} = 1 V,$ $V_{O} = 0$	Source	Full range	-10			-10			mA
Io	Output current	V _{CC} = 15 V,	0: 1	25°C	10	20		10	20		1111/
		$V_{ID} = -1 \text{ V},$ $V_{O} = 15 \text{ V}$	Sink	Full range	5			5			
		$V_{ID} = -1 \text{ V}, V_{O} = 20$	00 mV	25°C	12	30		12	30		μA
I _{os}	Short-circuit output current	V_{CC} at 5 V, V_{O} = 0, GND at -5 V		25°C		±40	±60		±40	±60	mA
		V _O = 2.5 V, no load		Full range		0.7	1.2		0.7	1.2	
I _{cc}	Supply current (four amplifiers)	$V_{CC} = MAX, V_O = 0$ no load	.5 V _{CC} ,	Full range		1.4	3		1.4	3	mA

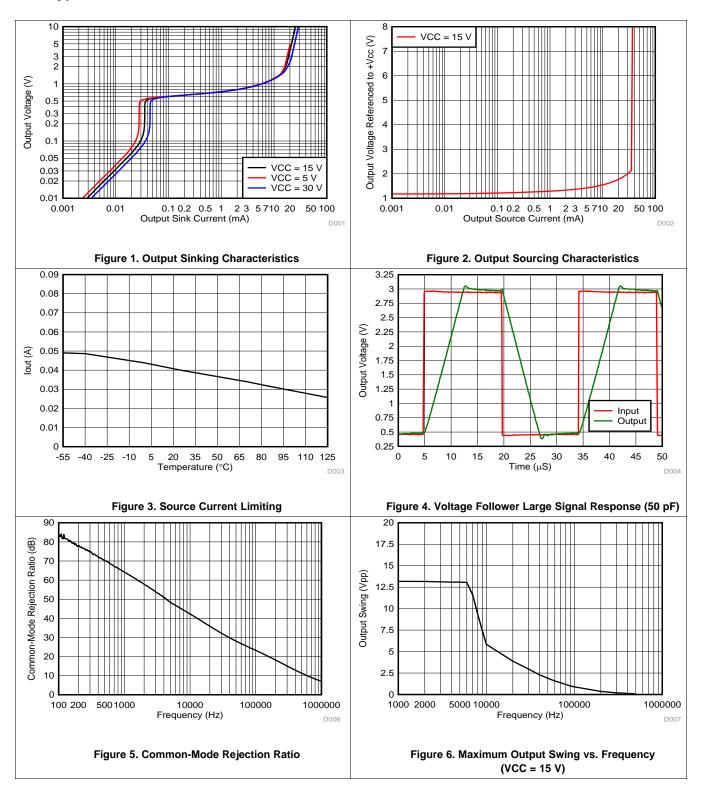
All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2902 and 30 V for the others. Full range is -55° C to 125°C for LM124, -25° C to 85°C for LM224, and 0°C to 70°C for LM324.

All typical values are at $T_A = 25$ °C

Electrical Characteristics for LMx24A and LM324KA (continued)

at specified free-air temperature, $V_{CC} = 5 \text{ V}$ (unless otherwise noted)

	DAMETER	TEST CONDITIONS(1)		T (2)	- 1	_M124A		LM224A			LM324A	, LM324F	(A	UNIT
PARAMETER		IESI CON	DITIONS	T _A ⁽²⁾	MIN	TYP ⁽³⁾	MAX	MIN	TYP ⁽³⁾	MAX	MIN	TYP ⁽³⁾	MAX	UNII
\/	Common-mode	V 20 V		25°C	0 to V _{CC} - 1.5			0 to V _{CC} – 1.5			0 to V _{CC} – 1.5			V
V _{ICR}	input voltage range	V _{CC} = 30 V		Full range	0 to V _{CC} - 2			0 to V _{CC} – 2			0 to V _{CC} – 2			V
		$R_L = 2 k\Omega$		25°C	V _{CC} - 1.5			V _{CC} - 1.5			V _{CC} - 1.5			
V_{OH}	High-level output voltage	V 20 V	$R_L = 2 k\Omega$	Full range	26			26			26			V
	output voltage	V _{CC} = 30 V	R _L ≥ 10 kΩ	Full range	27			27	28		27	28		
V _{OL}	Low-level output voltage	R _L ≤ 10 kΩ		Full range			20		5	20		5	20	mV
	Large-signal	V _{CC} = 15 V,		25°C	50	100		50	100		25	100		
A _{VD}	differential voltage amplification	$V_O = 1 \text{ V to } 11 \text{ V},$ $R_L \ge 2 \text{ k}\Omega$		Full range	25			25			15			V/mV
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min		25°C	70			70	80		65	80		dB
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{CC} / \Delta V_{IO})$			25°C	65			65	100		65	100		dB
V _{O1} / V _{O2}	Crosstalk attenuation	f = 1 kHz to 2	0 kHz	25°C		120			120			120		dB
		V _{CC} = 15 V,		25°C	-20			-20	-30	-60	-20	-30	-60	
		$V_{ID} = 1 V,$ $V_{O} = 0$	Source	Full range	-10			-10			-10			mA
lo	Output current	$V_{CC} = 15 V$,		25°C	10			10	20		1	20		IIIA
		$V_{ID} = -1 \text{ V},$ $V_{O} = 15 \text{ V}$	Sink	Full range	5			5			5			
		V _{ID} = −1 V, V ₀	_O = 200 mV	25°C	12			12	30		12	30		μΑ
los	Short-circuit output current	V _{CC} at 5 V, G V _O = 0	ND at -5 V,	25°C		±40	±60		±40	±60		±40	±60	mA
	0	V _O = 2.5 V, n	o load	Full range		0.7	1.2		0.7	1.2		0.7	1.2	
I _{CC}	Supply current (four amplifiers)	V _{CC} = 30 V, V no load	_O = 15 V,	Full range		1.4	3.		1.4	3		1.4	3	mA


5.6 Operating Conditions

 $V_{CC} = \pm 15 \text{ V}, T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
SR	Slew rate at unity gain	$R_L = 1 \text{ M}\Omega$, $C_L = 30 \text{ pF}$, $V_I = \pm 10 \text{ V}$ (see Figure 7)	0.5	V/µs
B ₁	Unity-gain bandwidth	$R_L = 1 M\Omega$, $C_L = 20 pF$ (see Figure 7)	1.2	MHz
V_{n}	Equivalent input noise voltage	$R_S = 100 \Omega$, $V_I = 0 V$, $f = 1 kHz$ (see Figure 8)	35	nV/√Hz

5.7 Typical Characteristics

6 Parameter Measurement Information

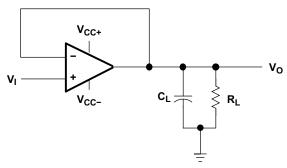


Figure 7. Unity-Gain Amplifier

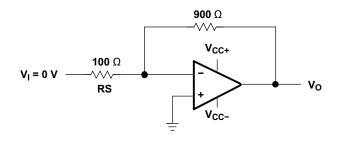
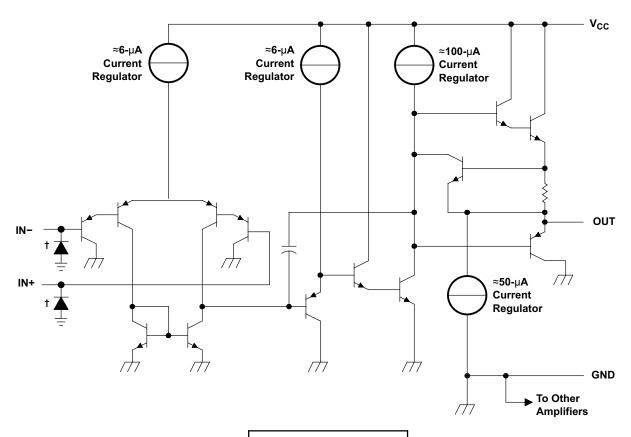


Figure 8. Noise-Test Circuit


7 Detailed Description

7.1 Overview

These devices consist of four independent high-gain frequency-compensated operational amplifiers that are designed specifically to operate from a single supply over a wide range of voltages. Operation from split supplies also is possible if the difference between the two supplies is 3 V to 32 V (3 V to 26 V for the LM2902 device), and V_{CC} is at least 1.5 V more positive than the input common-mode voltage. The low supply-current drain is independent of the magnitude of the supply voltage.

Applications include transducer amplifiers, DC amplification blocks, and all the conventional operational-amplifier circuits that now can be more easily implemented in single-supply-voltage systems. For example, the LM124 device can be operated directly from the standard 5-V supply that is used in digital systems and provides the required interface electronics, without requiring additional ±15-V supplies.

7.2 Functional Block Diagram

L	COMPONENT COUNT (total device)						
	Epi-FET	1					
	Transistors	95					
1	Diodes	4					
1	Resistors	11					
L	Capacitors	4					

[†] ESD protection cells - available on LM324K and LM324KA only

Important statement:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by HGSEMI manufacturer:

Other Similar products are found below:

OPA2991IDSGR OPA607IDCKT 007614D 633773R 635798C 635801A 702115D 709228FB 741528D NCV33072ADR2G

SC2902DTBR2G SC2903DR2G SC2903VDR2G LM258AYDT LM358SNG 430227FB 430228DB 460932C AZV831KTR-G1 409256CB

430232AB LM2904DR2GH LM358YDT LT1678IS8 042225DB 058184EB 070530X SC224DR2G SC239DR2G SC2902DG

SCYA5230DR2G 714228XB 714846BB 873836HB MIC918YC5-TR TS912BIYDT NCS2004MUTAG NCV33202DMR2G

M38510/13101BPA NTE925 SC2904DR2G SC358DR2G LM358EDR2G AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E

NJM358CG-TE2 HA1630S01LPEL-E LM324AWPT HA1630Q06TELL-E