LM1575/LM2575/LM2575HV
 SIMPLE SWITCHER ${ }^{\circledR}$ 1A Step-Down Voltage Regulator

General Description

The LM2575 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 1 A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and an adjustable output version.
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator.
The LM2575 series offers a high-efficiency replacement for popular three-terminal linear regulators. It substantially reduces the size of the heat sink, and in many cases no heat sink is required.
A standard series of inductors optimized for use with the LM2575 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10 \%$ on the oscillator frequency. External shutdown is included, featuring $50 \mu \mathrm{~A}$ (typical) standby current.

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and adjustable output versions
- Adjustable version output voltage range, 1.23 V to 37 V (57 V for HV version) $\pm 4 \%$ max over line and load conditions
- Guaranteed 1A output current
- Wide input voltage range, 40 V up to 60 V for HV version
- Requires only 4 external components
- 52 kHz fixed frequency internal oscillator
- TTL shutdown capability, low power standby mode
- High efficiency

■ Uses readily available standard inductors

- Thermal shutdown and current limit protection
- P^{+}Product Enhancement tested

Applications

■ Simple high-efficiency step-down (buck) regulator

- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to negative converter (Buck-Boost)

Typical Application (Fixed Output Voltage
 Versions)

Block Diagram and Typical Application

$3.3 \mathrm{~V}, \mathrm{R} 2=1.7 \mathrm{k}$
$5 \mathrm{~V}, \mathrm{R} 2=3.1 \mathrm{k}$
$12 \mathrm{~V}, \mathrm{R} 2=8.84 \mathrm{k}$
$15 \mathrm{~V}, \mathrm{R} 2=11.3 \mathrm{k}$
For ADJ. Version
R1 $=$ Open, R2 $=0 \Omega$
Note: Pin numbers are for the TO-220 package.
FIGURE 1.

Connection Diagrams (XXindicatesoutputvoltageoption.)

Absolute Maximum Ratings (Note 1)		
Maximum Supply Voltage		
LM1575/LM2575	45 V	Lead Temperature
LM2575HV	63 V	(Soldering, 10 sec.)

LM1575-3.3, LM2575-3.3, LM2575HV-3.3

Electrical Characteristics

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range

Symbol	Parameter	Conditions	Typ	LM1575-3.3	$\begin{gathered} \hline \text { LM2575-3.3 } \\ \text { LM2575HV-3.3 } \end{gathered}$	Units (Limits)
				Limit (Note 2)	Limit (Note 3)	
SYSTEM PARAMETERS (Note 4) Test Circuit Figure 2						
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A}$ Circuit of Figure 2	3.3	$\begin{aligned} & 3.267 \\ & 3.333 \end{aligned}$	$\begin{aligned} & 3.234 \\ & 3.366 \end{aligned}$	V $V(\operatorname{Min})$ $V(\operatorname{Max})$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM1575/LM2575	$4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}$ Circuit of Figure 2	3.3	$\begin{aligned} & 3.200 / 3.168 \\ & 3.400 / 3.432 \end{aligned}$	$\begin{aligned} & 3.168 / 3.135 \\ & 3.432 / 3.465 \end{aligned}$	V $V($ Min $)$ $V($ Max $)$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2575HV	$4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}$ Circuit of Figure 2	3.3	$\begin{aligned} & 3.200 / 3.168 \\ & 3.416 / 3.450 \end{aligned}$	$\begin{aligned} & 3.168 / 3.135 \\ & 3.450 / 3.482 \end{aligned}$	V V(Min) V(Max)
η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}$	75			\%

LM1575-5.0, LM2575-5.0, LM2575HV-5.0
 Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	Typ	LM1575-5.0	$\begin{gathered} \text { LM2575-5.0 } \\ \text { LM2575HV-5.0 } \end{gathered}$	Units (Limits)
				Limit (Note 2)	Limit (Note 3)	
SYSTEM PARAMETERS (Note 4) Test Circuit Figure 2						
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{LOAD}}=0.2 \mathrm{~A}$ Circuit of Figure 2	5.0	$\begin{aligned} & 4.950 \\ & 5.050 \end{aligned}$	$\begin{aligned} & 4.900 \\ & 5.100 \end{aligned}$	$\begin{gathered} \text { V } \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$
$\mathrm{V}_{\text {Out }}$	Output Voltage LM1575/LM2575	$\begin{aligned} & 0.2 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 1 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \end{aligned}$ Circuit of Figure 2	5.0	$\begin{aligned} & 4.850 / 4.800 \\ & 5.150 / 5.200 \end{aligned}$	$\begin{aligned} & 4.800 / 4.750 \\ & 5.200 / 5.250 \end{aligned}$	$\begin{gathered} \text { V } \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2575HV	$\begin{aligned} & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	5.0	$\begin{aligned} & 4.850 / 4.800 \\ & 5.175 / 5.225 \end{aligned}$	$\begin{aligned} & 4.800 / 4.750 \\ & 5.225 / 5.275 \end{aligned}$	$\begin{gathered} \text { V } \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$

LM1575-5.0, LM2575-5.0, LM2575HV-5.0

Electrical Characteristics (Continued)

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	Typ	LM1575-5.0	LM2575-5.0 LM2575HV-5.0	Units (Limits)
				Limit (Note 2)	Limit $($ Note 3)	
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}$	77			$\%$

LM1575-12, LM2575-12, LM2575HV-12 Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	Typ	LM1575-12	LM2575-12 LM2575HV-12	Units (Limits)
				Limit (Note 2)	Limit (Note 3)	
SYSTEM PARAMETERS (Note 4) Test Circuit Figure 2						
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A}$ Circuit of Figure 2	12	$\begin{aligned} & 11.88 \\ & 12.12 \end{aligned}$	$\begin{aligned} & 11.76 \\ & 12.24 \end{aligned}$	
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM1575/LM2575	$\begin{aligned} & \hline 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}, \\ & 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \\ & \hline \end{aligned}$	12	$\begin{aligned} & 11.64 / 11.52 \\ & 12.36 / 12.48 \end{aligned}$	$\begin{aligned} & 11.52 / 11.40 \\ & 12.48 / 12.60 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~V}(\operatorname{Min}) \\ \mathrm{V}(\operatorname{Max}) \end{gathered}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2575HV	$\begin{aligned} & \hline 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}, \\ & 15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 60 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \\ & \hline \end{aligned}$	12	$\begin{aligned} & 11.64 / 11.52 \\ & 12.42 / 12.54 \end{aligned}$	$\begin{aligned} & 11.52 / 11.40 \\ & 12.54 / 12.66 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { V } \\ \text { V(Min) } \\ \text { V(Max) } \\ \hline \end{gathered}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}$	88			\%

LM1575-15, LM2575-15, LM2575HV-15
 Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range

Symbol	Parameter	Conditions	Typ	LM1575-15	$\begin{gathered} \text { LM2575-15 } \\ \text { LM2575HV-15 } \end{gathered}$	Units (Limits)
				Limit (Note 2)	Limit (Note 3)	
SYSTEM PARAMETERS (Note 4) Test Circuit Figure 2						
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=30 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A}$ Circuit of Figure 2	15	$\begin{aligned} & 14.85 \\ & 15.15 \end{aligned}$	$\begin{aligned} & 14.70 \\ & 15.30 \end{aligned}$	$\begin{gathered} \text { V } \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM1575/LM2575	$\begin{aligned} & 0.2 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 1 \mathrm{~A}, \\ & 18 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \end{aligned}$ Circuit of Figure 2	15	$\begin{aligned} & 14.55 / 14.40 \\ & 15.45 / 15.60 \end{aligned}$	$\begin{aligned} & 14.40 / 14.25 \\ & 15.60 / 15.75 \end{aligned}$	$\begin{gathered} \text { V } \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2575HV	$\begin{aligned} & 0.2 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 1 \mathrm{~A}, \\ & 18 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} \end{aligned}$ Circuit of Figure 2	15	$\begin{gathered} 14.55 / 14.40 \\ 15.525 / 15.675 \end{gathered}$	$\begin{aligned} & 14.40 / 14.25 \\ & 15.68 / 15.83 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\operatorname{Min}) \\ \mathrm{V}(\operatorname{Max}) \end{gathered}$
η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=18 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}$	88			\%

LM1575-ADJ, LM2575-ADJ, LM2575HV-ADJ
 Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	Typ	LM1575-ADJ	LM2575-ADJ LM2575HV-ADJ	Units (Limits)
				Limit (Note 2)	Limit (Note 3)	
SYSTEM PARAMETERS (Note 4) Test Circuit Figure 2						
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \\ & \text { Circuit of Figure } 2 \end{aligned}$	1.230	$\begin{aligned} & 1.217 \\ & 1.243 \end{aligned}$	$\begin{aligned} & 1.217 \\ & 1.243 \end{aligned}$	V V (Min) V(Max)
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage LM1575/LM2575	$\begin{aligned} & 0.2 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 1 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \text { Circuit of Figure } 2 \end{aligned}$	1.230	$\begin{aligned} & 1.205 / 1.193 \\ & 1.255 / 1.267 \end{aligned}$	$\begin{aligned} & 1.193 / 1.180 \\ & 1.267 / 1.280 \end{aligned}$	V V (Min) V (Max)
$\mathrm{V}_{\text {OUT }}$	Feedback Voltage LM2575HV	$\begin{aligned} & 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}, \\ & 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \text { Circuit of Figure } 2 \end{aligned}$	1.230	$\begin{aligned} & 1.205 / 1.193 \\ & 1.261 / 1.273 \end{aligned}$	$\begin{aligned} & 1.193 / 1.180 \\ & 1.273 / 1.286 \end{aligned}$	V V(Min) V(Max)
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	77			\%

All Output Voltage Versions

Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and Adjustable version, $\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}$ for the 12 V version, and $\mathrm{V}_{\mathrm{IN}}=30 \mathrm{~V}$ for the 15 V version. $\mathrm{I}_{\text {LOAD }}=200 \mathrm{~mA}$.

Symbol	Parameter	Conditions	Typ	LM1575-XX	$\begin{gathered} \text { LM2575-XX } \\ \text { LM2575HV-XX } \end{gathered}$	Units (Limits)
				Limit (Note 2)	Limit (Note 3)	
DEVICE PARAMETERS						
I_{b}	Feedback Bias Current	$\mathrm{V}_{\text {Out }}=5 \mathrm{~V}$ (Adjustable Version Only)	50	100/500	100/500	nA
f_{0}	Oscillator Frequency	(Note 13)	52	$\begin{aligned} & 47 / 43 \\ & 58 / 62 \end{aligned}$	$\begin{aligned} & 47 / 42 \\ & 58 / 63 \end{aligned}$	$\begin{gathered} \mathrm{kHz} \\ \mathrm{kHz}(\mathrm{Min}) \\ \mathrm{kHz}(\operatorname{Max}) \end{gathered}$
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	$\mathrm{l}_{\text {Out }}=1 \mathrm{~A}($ Note 5)	0.9	1.2/1.4	1.2/1.4	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\mathrm{Max}) \end{gathered}$
DC	Max Duty Cycle (ON)	(Note 6)	98	93	93	$\begin{gathered} \% \\ \%(\operatorname{Min}) \end{gathered}$
I_{CL}	Current Limit	Peak Current (Notes 5, 13)	2.2	$\begin{aligned} & 1.7 / 1.3 \\ & 3.0 / 3.2 \end{aligned}$	$\begin{aligned} & 1.7 / 1.3 \\ & 3.0 / 3.2 \end{aligned}$	$\begin{gathered} \hline A \\ A(\operatorname{Min}) \\ A(\operatorname{Max}) \end{gathered}$
I_{L}	Output Leakage Current	(Notes 7, 8) Output $=0 \mathrm{~V}$ Output $=-1 \mathrm{~V}$	7.5	2 30	2 30	$\begin{array}{\|c\|} \hline \mathrm{mA}(\mathrm{Max}) \\ \mathrm{mA} \\ \mathrm{~mA}(\mathrm{Max}) \\ \hline \end{array}$
I_{Q}	Quiescent Current	(Note 7)	5	10/12	10	$\begin{array}{\|c\|} \hline \mathrm{mA} \\ \mathrm{~mA}(\operatorname{Max}) \end{array}$
$\mathrm{I}_{\text {STBY }}$	Standby Quiescent Current	$\overline{\mathrm{ON}} / \mathrm{OFF}$ Pin $=5 \mathrm{~V}$ (OFF)	50	200/500	200	$\mu \mathrm{A}$ $\mu \mathrm{A}$ (Max)

All Output Voltage Versions

Electrical Characteristics (Continued)

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and Adjustable version, $\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}$ for the 12 V version, and $\mathrm{V}_{\mathrm{IN}}=30 \mathrm{~V}$ for the 15 V version. $\mathrm{I}_{\text {LOAD }}=200 \mathrm{~mA}$.

Symbol	Parameter	Conditions	Typ	LM1575-XX	$\begin{gathered} \text { LM2575-XX } \\ \text { LM2575HV-XX } \end{gathered}$	Units (Limits)
				Limit (Note 2)	Limit (Note 3)	
DEVICE PARAMETERS						
$\begin{array}{\|l\|} \hline \theta_{\mathrm{JA}} \\ \theta_{\mathrm{JA}} \\ \theta_{\mathrm{JC}} \\ \theta_{\mathrm{JA}} \\ \theta_{\mathrm{JA}} \\ \theta_{\mathrm{JA}} \\ \hline \end{array}$	Thermal Resistance	T Package, Junction to Ambient (Note 9) T Package, Junction to Ambient (Note 10) T Package, Junction to Case N Package, Junction to Ambient (Note 11) M Package, Junction to Ambient (Note 11) S Package, Junction to Ambient (Note 12)	$\begin{array}{\|c\|} \hline 65 \\ 45 \\ 2 \\ 85 \\ 100 \\ 37 \end{array}$			${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\overline{\text { ON }}$ /OFF CONTROL Test Circuit Figure 2						
V_{IH}	$\overline{\mathrm{ON}} / \mathrm{OFF}$ Pin Logic Input Level	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	1.4	2.2/2.4	2.2/2.4	V(Min)
V_{IL}		$\mathrm{V}_{\text {OUT }}=$ Nominal Output Voltage	1.2	1.0/0.8	1.0/0.8	V(Max)
I_{IH}	$\overline{\mathrm{ON}} /$ OFF Pin Input Current	$\overline{\text { ON }} /$ OFF Pin $=5 \mathrm{~V}$ (OFF)	12	30	30	$\mu \mathrm{A}$ $\mu \mathrm{A}$ (Max)
IL		$\overline{\mathrm{ON}} / \mathrm{OFF}$ Pin $=0 \mathrm{~V}(\mathrm{ON})$	0	10	10	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All limits are used to calculate Average Outgoing Quality Level, and all are 100\% production tested.
Note 3: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100\% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods.

Note 4: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM1575/LM2575 is used as shown in the Figure 2 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.
Note 5: Output (pin 2) sourcing current. No diode, inductor or capacitor connected to output pin.
Note 6: Feedback (pin 4) removed from output and connected to OV.
Note 7: Feedback (pin 4) removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5 V versions, and +25 V for the 12 V and 15 V versions, to force the output transistor OFF.
Note 8: $\mathrm{V}_{\mathrm{IN}}=40 \mathrm{~V}$ (60 V for the high voltage version).
Note 9: Junction to ambient thermal resistance (no external heat sink) for the 5 lead TO-220 package mounted vertically, with $1 / 2$ inch leads in a socket, or on a PC board with minimum copper area.
Note 10: Junction to ambient thermal resistance (no external heat sink) for the 5 lead TO- 220 package mounted vertically, with $1 / 2$ inch leads soldered to a PC board containing approximately 4 square inches of copper area surrounding the leads.
Note 11: Junction to ambient thermal resistance with approximately 1 square inch of pc board copper surrounding the leads. Additional copper area will lower thermal resistance further. See thermal model in Switchers made Simple software.
Note 12: If the TO-263 package is used, the thermal resistance can be reduced by increasing the PC board copper area thermally connected to the package: Using 0.5 square inches of copper area, θ_{JA} is $50^{\circ} \mathrm{C} / \mathrm{W}$; with 1 square inch of copper area, θ_{JA} is $37^{\circ} \mathrm{C} / \mathrm{W}$; and with 1.6 or more square inches of copper area, θ_{JA} is $32^{\circ} \mathrm{C} / \mathrm{W}$.

Note 13: The oscillator frequency reduces to approximately 18 kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This self protection feature lowers the average power dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%.

Typical Performance Characteristics (Circuit of Figure 2)

Typical Performance Characteristics (Circuit of Figure 2) (Continued)

Switch Saturation Voltage

Typical Performance Characteristics (Circuit of Figure 2) (Continued)

Switching Waveforms

$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$
A: Output Pin Voltage, 10V/div
B: Output Pin Current, 1A/div
C: Inductor Current, 0.5A/div
D: Output Ripple Voltage, $20 \mathrm{mV} / \mathrm{div}$,
AC-Coupled
Horizontal Time Base: $5 \mu \mathrm{~s} / \mathrm{div}$

Test Circuit and Layout Guidelines

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance generate voltage transients which can cause problems. For minimal inductance and ground loops, the length of the leads indicated by heavy lines should be kept as short as possible.

Maximum Power Dissipation

(TO-263) (See (Note 12))

Load Transient Response

Single-point grounding (as indicated) or ground plane construction should be used for best results. When using the Adjustable version, physically locate the programming resistors near the regulator, to keep the sensitive feedback wiring short.

Test Circuit and Layout Guidelines (Continued)

$\mathrm{C}_{\mathrm{IN}}-100 \mu \mathrm{~F}, 75 \mathrm{~V}$, Aluminum Electrolytic
$C_{\text {OUt }}-330 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic
D1 - Schottky, 11DQ06
L1 - $330 \mu \mathrm{H}, \mathrm{PE}-52627$ (for 5V in, 3.3V out, use $100 \mu \mathrm{H}$, PE-92108)

where $\mathrm{V}_{\mathrm{REF}}=1.23 \mathrm{~V}$, R 1 between 1 k and 5 k .
R1 - 2k, 0.1\%
R2 - 6.12k, 0.1\%

FIGURE 2.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by HGSEMI manufacturer:
Other Similar products are found below :
NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP6153MNTWG NCP81005MNTWG NCP81101BMNTXG NCP81205MNTXG SJ6522AG SJE6600 AZ7500BMTR-E1 IR35215MTRPBF SG3845DM NCP4202MNR2G NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG NCP81141MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UBA2051C IR35201MTRPBF FSL4110LRLX NCP1015ST65T3G NCP1240AD065R2G NCP1240FD065R2G NCP1336BDR2G NCP1361BABAYSNT1G NCP1230P100G NX2124CSTR SG2845M NCP1366BABAYDR2G NCP81101MNTXG TEA19362T/1J NCP81174NMNTXG NCP4308DMTTWG NCP4308DMNTWG NCP4308AMTTWG NCP1366AABAYDR2G NCP1256ASN65T1G NCP1251FSN65T1G NCP1246BLD065R2G MB39A136PFT-G-BND-ERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G IR35204MTRPBF MCP1633T-E/MG

