SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter 150 kHz 2A Step-Down Voltage Regulator

General Description

The LM2592HV series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 2A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and an adjustable output version.
This series of switching regulators is similar to the LM2593HV, but without some of the supervisory and performance features of the latter.
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensationt, improved line and load specifications and a fixed-frequency oscillator.
The LM2592HV operates at a switching frequency of 150 kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Available in a standard 5 -lead TO-220 package with several different lead bend options, and a 5-lead TO-263 Surface mount package.
Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage under all conditions of input voltage and output load conditions, and $\pm 15 \%$ on the oscillator frequency. External shutdown is included, featuring typically $90 \mu \mathrm{~A}$ standby current. Self protection features include a two stage
current limit for the output switch and an over temperature shutdown for complete protection under fault conditions.

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and adjustable output versions
- Adjustable version output voltage range, 1.2 V to 57 V $\pm 4 \%$ max over line and load conditions
- Guaranteed 2A output load current
- Available in 5-pin TO-220 and TO-263 (surface mount) Package
- Input voltage range up to 60 V
- 150 kHz fixed frequency internal oscillator
- On/Off control
- Low power standby mode, I_{Q} typically $90 \mu \mathrm{~A}$
- High Efficiency
- Thermal shutdown and current limit protection

Applications

- Simple high-efficiency step-down (buck) regulator
- Efficient pre-regulator for linear regulators
- On-card switching regulators
- Positive to Negative converter

Note: † Patent Number 5,382,918.

Typical Application (Fixed Output Voltage Versions)

Connection Diagrams

Bent and Staggered Leads, Through Hole Package 5-Lead TO-220 (T)

Order Number LM2592HVT-3.3, LM2592HVT-5.0, or LM2592HVT-ADJ

Order Number LM2592HVS-3.3, LM2592HVS-5.0, or LM2592HVS-ADJ

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Maximum Supply Voltage (VIN)	63 V
ON/OFF Pin Voltage	$-0.3 \leq \mathrm{V} \leq+25 \mathrm{~V}$
Feedback Pin Voltage	$-0.3 \leq \mathrm{V} \leq+25 \mathrm{~V}$
Output Voltage to Ground	
\quad (Steady State)	-1 V

Power Dissipation Internally limited
Storage Temperature Range
ESD Susceptibility

Human Body Model (Note 2)
2 kV
Lead Temperature
S Package

Vapor Phase (60 sec.)	$+215^{\circ} \mathrm{C}$
Infrared (10 sec.)	$+245^{\circ} \mathrm{C}$
T Package (Soldering, 10 sec.)	$+260^{\circ} \mathrm{C}$
Maximum Junction Temperature	$+150^{\circ} \mathrm{C}$

Operating Conditions
Temperature Range
Supply Voltage
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
4.5 V to 60 V

LM2592HV-3.3

Electrical Characteristics

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	LM2592HV-3.3		Units (Limits)
			Typ (Note 3)	Limit (Note 4)	
SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1					
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 2 \mathrm{~A}$	3.3		V
				3.168/3.135	$V(\min)$
				3.432/3.465	V (max)
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=2 \mathrm{~A}$	76		

LM2592HV-5.0

Electrical Characteristics

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	LM2592HV-5.0		Units (Limits)
			Typ (Note 3)	Limit (Note 4)	
SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1					
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 2 \mathrm{~A}$	5	$\begin{aligned} & 4.800 / 4.750 \\ & 5.200 / 5.250 \end{aligned}$	
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=2 \mathrm{~A}$	81		\%

LM2592HV-ADJ

Electrical Characteristics

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	LM2592HV-ADJ		Units (Limits)
			$\begin{gathered} \text { Typ } \\ \text { (Note 3) } \end{gathered}$	Limit (Note 4)	
SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1					
$\mathrm{V}_{\text {FB }}$	Feedback Voltage	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 60 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 2 \mathrm{~A}$ $\mathrm{V}_{\text {Out }}$ programmed for 3 V . Circuit of Figure 1.	1.230	$\begin{aligned} & 1.193 / 1.180 \\ & 1.267 / 1.280 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~V}(\min) \\ \mathrm{V}(\max) \end{gathered}$
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=2 \mathrm{~A}$	75		\%

All Output Voltage Versions

Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and Adjustable version. $\mathrm{I}_{\text {LOAD }}=500 \mathrm{~mA}$

Symbol	Parameter	Conditions	LM2592HV-XX		Units (Limits)
			Typ (Note 3)	Limit (Note 4)	
DEVICE PARAMETERS					
I_{b}	Feedback Bias Current	Adjustable Version Only, $\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}$	10	50/100	$\begin{gathered} \mathrm{nA} \\ \mathrm{nA}(\max) \end{gathered}$
f_{0}	Oscillator Frequency	(Note 6)	150	$\begin{aligned} & 127 / 110 \\ & 173 / 173 \end{aligned}$	$\begin{gathered} \hline \mathrm{kHz} \\ \mathrm{kHz}(\min) \\ \mathrm{kHz}(\max) \\ \hline \end{gathered}$
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	$\mathrm{l}_{\text {Out }}=2 \mathrm{~A}($ Note 7) (Note 8)	1.10	1.3/1.4	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\max) \end{gathered}$
DC	Max Duty Cycle (ON) Min Duty Cycle (OFF)	(Note 8) (Note 9)	$\begin{gathered} 100 \\ 0 \end{gathered}$		\%
$\mathrm{I}_{\text {clim }}$	Switch current Limit	Peak Current, (Note 7) (Note 8)	3.0	$\begin{aligned} & 2.4 / \mathbf{2 . 3} \\ & 3.7 / 4.0 \end{aligned}$	A A(min) A(max)
I_{L}	Output Leakage Current	(Note 7) (Note 9) (Note 10)Output $=0 \mathrm{~V}$ Output $=-1 \mathrm{~V}$	5	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{gathered} \mu \mathrm{A}(\max) \\ \mathrm{mA} \\ \mathrm{~mA}(\max) \end{gathered}$
I_{Q}	Operating Quiescent Current	$\overline{\text { SD }} /$ SS Pin Open (Note 9)	5	10	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\max) \end{gathered}$
$\mathrm{I}_{\text {StBY }}$	Standby Quiescent Current	$\overline{\text { SD }} /$ SS pin $=0 \mathrm{~V} \quad$ (Note 10)	90	200/250	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\max) \end{gathered}$
$\begin{aligned} & \hline \theta_{\mathrm{JC}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JA}} \\ & \hline \end{aligned}$	Thermal Resistance	TO220 or TO263 Package, Junction to Case TO220 Package, Juncton to Ambient (Note 11) TO263 Package, Juncton to Ambient (Note 12) TO263 Package, Juncton to Ambient (Note 13) TO263 Package, Juncton to Ambient (Note 14)	$\begin{gathered} \hline 2 \\ 50 \\ 50 \\ 30 \\ 20 \end{gathered}$		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
ON/OFF CONTROL Test Circuit Figure 1					
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	$\overline{\mathrm{ON}}$ /OFF Pin Logic Input Threshold Voltage	Low (Regulator ON) High (Regulator OFF)	1.3	$\begin{aligned} & 0.6 \\ & 2.0 \end{aligned}$	V $\mathrm{V}(\max)$ $\mathrm{V}(\min)$
I_{H}	$\overline{\text { ON }}$ /OFF Pin Input Current	$\mathrm{V}_{\text {LOGIC }}=2.5 \mathrm{~V}$ (Regulator OFF)	5	15	$\mu \mathrm{A}$ $\mu \mathrm{A}$ (max)
I_{L}		$\mathrm{V}_{\text {LOGIC }}=0.5 \mathrm{~V}$ (Regulator ON)	0.02	5	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\max) \end{gathered}$

All Output Voltage Versions Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: The human body model is a 100 pF capacitor discharged through a 1.5 k resistor into each pin.
Note 3: Typical numbers are at $25^{\circ} \mathrm{C}$ and represent the most likely norm.
Note 4: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100\% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
Note 5: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2592HV is used as shown in the Figure 1 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.
Note 6: The switching frequency is reduced when the second stage current limit is activated. The amount of reduction is determined by the severity of current overload.
Note 7: No diode, inductor or capacitor connected to output pin.
Note 8: Feedback pin removed from output and connected to OV to force the output transistor switch ON.
Note 9: Feedback pin removed from output and connected to 12 V for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and the ADJ. version to force the output transistor switch OFF.
Note 10: $\mathrm{V}_{\mathrm{IN}}=60 \mathrm{~V}$.
Note 11: Junction to ambient thermal resistance (no external heat sink) for the package mounted TO-220 package mounted vertically, with the leads soldered to a printed circuit board with (1 oz.) copper area of approximately $1 \mathrm{in}^{2}$.
Note 12: Junction to ambient thermal resistance with the TO-263 package tab soldered to a single sided printed circuit board with $0.5 \mathrm{in}^{2}$ of (1 oz .) copper area.
Note 13: Junction to ambient thermal resistance with the TO-263 package tab soldered to a single sided printed circuit board with $2.5 \mathrm{in}^{2}$ of (1 oz .) copper area.
Note 14: Junction to ambient thermal resistance with the TO-263 package tab soldered to a double sided printed circuit board with $3 \mathrm{in}^{2}$ of (1 oz.) copper area on the LM2592HVS side of the board, and approximately $16 \mathrm{in}^{2}$ of copper on the other side of the p-c board. See application hints in this data sheet and the thermal model in Switchers Made Simple available at http://power.national.com.

Typical Performance Characteristics (Circuit of Figure 1)

Switch Saturation
Voltage

Operating Quiescent Current

Switch Current Limit

Shutdown Quiescent Current

Efficiency

Dropout Voltage

Minimum Operating Supply Voltage

Typical Performance Characteristics (Circuit of Figure 1) (Continued)

$\overline{\mathrm{ON}} /$ OFF Pin Current (Sinking)

Internal Gain-Phase Characteristics

Block Diagram

PIN FUNCTIONS

$+\mathrm{V}_{\text {IN }}$ (Pin 1) - This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.
Output (Pin 2) -Internal switch. The voltage at this pin switches between approximately ($+\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {SAT }}$) and approximately -0.5 V , with a duty cycle of $\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\mathrm{IN}}$.
Ground (Pin 3)—Circuit ground.
Feedback (Pin 4) —Senses the regulated output voltage to complete the feedback loop. This pin is directly connected to the Output for the fixed voltage versions, but is set to 1.23 V by means of a resistive divider from the output for the Adjustable version. If a feedforward capacitor is used (Adjustable version), then a negative voltage spike is generated
on this pin whenever the output is shorted. This happens because the feedforward capacitor cannot discharge fast enough, and since one end of it is dragged to Ground, the other end goes momentarily negative. To prevent the energy rating of this pin from being exceeded, a small-signal Schottky diode to Ground is recommended for DC input voltages above 40 V whenever a feedforward capacitor is present (See Figure 1). Feedforward capacitor values larger than 0.1 $\mu \mathrm{F}$ are not recommended for the same reason, whatever be the $D C$ input voltage.
$\overline{\mathbf{O N}}$ /OFF (Pin 5) -The regulator is in shutdown mode, drawing about $90 \mu \mathrm{~A}$, when this pin is driven to a high level ($\geq 2.0 \mathrm{~V}$), and is in normal operation when this Pin is left floating or driven to a low level ($\leq 0.6 \mathrm{~V}$). The typical value of the threshold is 1.3 V and the voltage on this pin must not exceed 25 V .

Important statement:
Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by HGSEMI manufacturer:

Other Similar products are found below :
ESM6D044440C05AAQ FMD15.24G PSL486-7LR PSR152.5-7IR Q48T30020-NBB0 AVO240-48S12B-6L AVO250-48S28B-6L NAN0505 HW-L16D JAHW100Y1 217-1617-001 22827 SPB05C-12 SQ24S15033-PS0S $18952 \underline{19-130041}$ CE-1003 CE-1004 GQ2541-7R PSE1000DCDC-12V RDS180245 MAU228 419-2065-201 449-2075-101 TME 0303S TME 0505S TME 1205S TME 1212S TME 2405S TME 2412S J80-0041NL V300C24C150BG 419-2062-200 419-2063-401 419-2067-101 419-2067-501 419-2068-001 DCG40-5G DFC15U48D15 449-2067-000 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS-2415 XKS-1215 033456 NCT1000N040R050B SPB05B-15 SPB05C-15

