

POSITIVE VOLTAGE REGULATORS

- OUTPUT CURRENT TO 1.5A
- OUTPUT VOLTAGES OF 5; 6; 8; 9; 10; 12; 15; 18; 24V
- THERMAL OVERLOAD PROTECTION
- SHORT CIRCUIT PROTECTION
- OUTPUT TRANSITION SOA PROTECTION

DESCRIPTION

The LM78XX series of three-terminal positive regulators is available in TO-220, TO263, packages and several fixed output voltages, making it useful in a wide range of applications.

These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

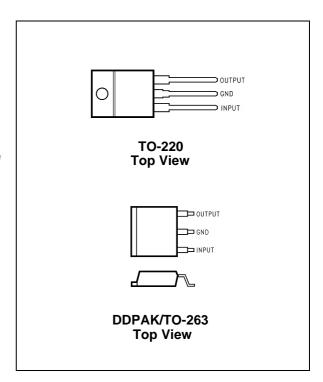
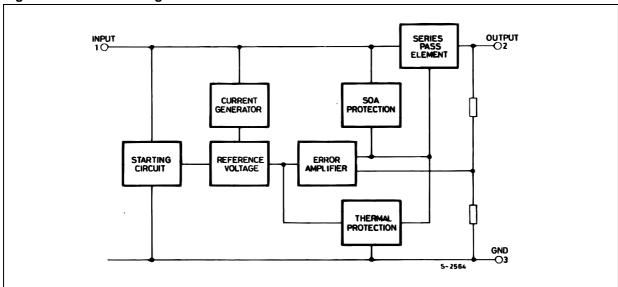



Figure 1: Schematic Diagram

Table 1: Absolute Maximum Ratings

Symbol	Para	meter	Value	Unit
V	DC Input Voltage	C Input Voltage for $V_O = 5$ to 18V 3 for $V_O = 20$, 24V 4		
V _I				V
Io	Output Current	Internally Limited		
P _{tot}	Power Dissipation		Internally Limited	
T _{stg}	Storage Temperature Range		-65 to 150	°C
T _{op}	Operating Junction Temperature	for L7800	-55 to 150	°C
'op	Range	for L7800C	0 to 150	

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2: Thermal Data

Symbol	Parameter	TO-220	TO-263	Unit
R _{thj-case}	Thermal Resistance Junction-case Max	5	5	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient Max	50	60	°C/W

Figure 2: Schematic Diagram

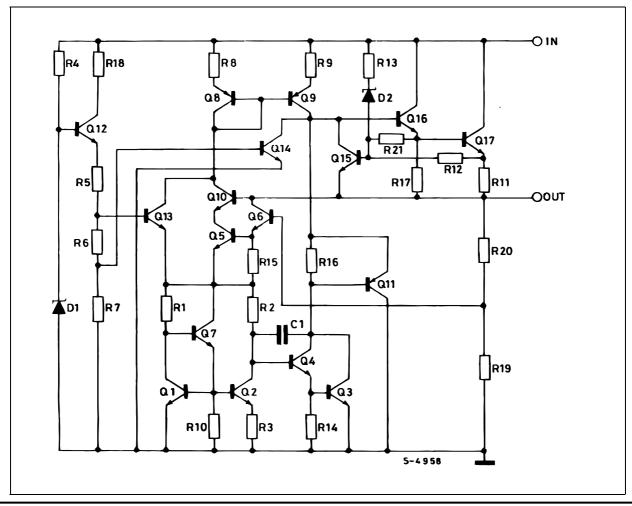
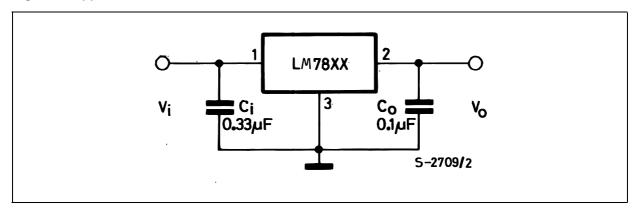



Figure 4: Application Circuits

TEST CIRCUITS

Figure 5: DC Parameter

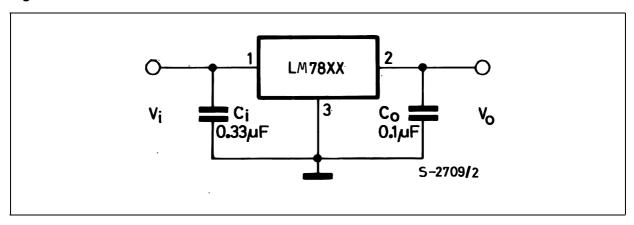


Figure 6: Load Regulation

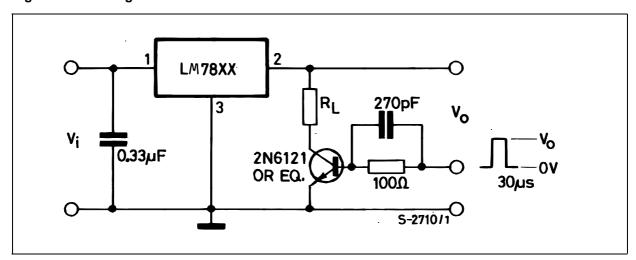


Figure 7: Ripple Rejection

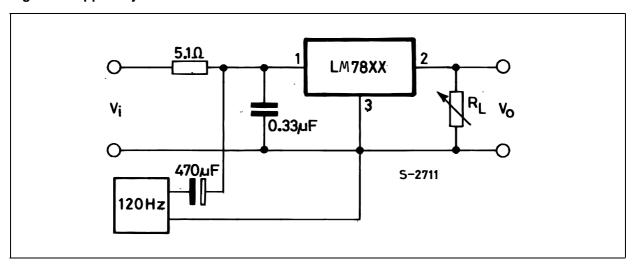


Table 4: Electrical Characteristics Of LM7805 (refer to the test circuits, T_J = -55 to 150°C, V_I = 10V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	4.8	5	5.2	V
Vo	Output Voltage	$I_O = 5$ mA to 1 A $P_O \le 15$ W $V_I = 8$ to 20 V	4.65	5	5.35	V
ΔV _O (*)	Line Regulation	$V_1 = 7 \text{ to } 25 \text{ V}$ $T_J = 25^{\circ}\text{C}$		3	50	mV
		$V_{I} = 8 \text{ to } 12 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$		1	25	
ΔV _O (*)	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			100	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			25	
I _d	Quiescent Current	T _J = 25°C			6	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 8 to 25 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	$I_O = 5 \text{ mA}$		0.6		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25$ °C			40	μV/V _O
SVR	Supply Voltage Rejection	V _I = 8 to 18 V f = 120Hz	68			dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$		2	2.5	V
R _O	Output Resistance	f = 1 KHz		17		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.75	1.2	Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C	1.3	2.2	3.3	Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 5: Electrical Characteristics Of LM7806 (refer to the test circuits, T_J = -55 to 150°C, V_I = 11V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$	5.75	6	6.25	V
Vo	Output Voltage	$I_O = 5 \text{ mA to 1 A}$ $P_O \le 15W$ $V_I = 9 \text{ to 21 V}$	5.65	6	6.35	V
ΔV _O (*)	Line Regulation	$V_{I} = 8 \text{ to } 25 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			60	mV
		$V_I = 9 \text{ to } 13 \text{ V}$ $T_J = 25^{\circ}\text{C}$			30	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			100	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			30	
I _d	Quiescent Current	T _J = 25°C			6	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 9 to 25 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		0.7		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C			40	μV/V _O
SVR	Supply Voltage Rejection	V _I = 9 to 19 V f = 120Hz	65			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2	2.5	V
R _O	Output Resistance	f = 1 KHz		19		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.75	1.2	Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C	1.3	2.2	3.3	Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 6: Electrical Characteristics Of LM7808 (refer to the test circuits, T_J = -55 to 150°C, V_I = 14V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	7.7	8	8.3	V
Vo	Output Voltage	$I_O = 5$ mA to 1 A $P_O \le 15$ W $V_I = 11.5$ to 23 V	7.6	8	8.4	V
ΔV _O (*)	Line Regulation	$V_I = 10.5 \text{ to } 25 \text{ V}$ $T_J = 25^{\circ}\text{C}$			80	mV
		$V_{I} = 11 \text{ to } 17 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			40	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			100	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			40	
I _d	Quiescent Current	T _J = 25°C			6	mA
ΔI_{d}	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 11.5 to 25 V			0.8	
$\Delta V_O/\Delta T$	Output Voltage Drift	I _O = 5 mA		1		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C			40	μV/V _O
SVR	Supply Voltage Rejection	V _I = 11.5 to 21.5 V f = 120Hz	62			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2	2.5	V
R _O	Output Resistance	f = 1 KHz		16		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.75	1.2	Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C	1.3	2.2	3.3	Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 7: Electrical Characteristics Of LM7812 (refer to the test circuits, T_J = -55 to 150°C, V_I = 19V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$	11.5	12	12.5	V
Vo	Output Voltage	$I_O = 5 \text{ mA to 1 A}$ $P_O \le 15W$ $V_I = 15.5 \text{ to 27 V}$	11.4	12	12.6	V
$\Delta V_{O}(*)$	Line Regulation	$V_{I} = 14.5 \text{ to } 30 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			120	mV
		$V_{I} = 16 \text{ to } 22 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			60	
ΔV _O (*)	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			100	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			60	
I _d	Quiescent Current	$T_J = 25^{\circ}C$			6	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 15 to 30 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	$I_O = 5 \text{ mA}$		1.5		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25$ °C			40	μV/V _O
SVR	Supply Voltage Rejection	V _I = 15 to 25 V f = 120Hz	61			dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$		2	2.5	V
R _O	Output Resistance	f = 1 KHz		18		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.75	1.2	Α
I _{scp}	Short Circuit Peak Current	$T_J = 25^{\circ}C$	1.3	2.2	3.3	Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 8: Electrical Characteristics Of LM7815 (refer to the test circuits, T_J = -55 to 150°C, V_I = 23V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	14.4	15	15.6	V
Vo	Output Voltage	$I_O = 5$ mA to 1 A $P_O \le 15$ W $V_I = 18.5$ to 30 V	14.25	15	15.75	V
ΔV _O (*)	Line Regulation	$V_I = 17.5 \text{ to } 30 \text{ V}$ $T_J = 25^{\circ}\text{C}$			150	mV
		$V_{I} = 20 \text{ to } 26 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			75	
ΔV _O (*)	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			150	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			75	
I _d	Quiescent Current	T _J = 25°C			6	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 18.5 to 30 V			0.8	
$\Delta V_O/\Delta T$	Output Voltage Drift	I _O = 5 mA		1.8		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25$ °C			40	μV/V _O
SVR	Supply Voltage Rejection	V _I = 18.5 to 28.5 V f = 120Hz	60			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2	2.5	V
R _O	Output Resistance	f = 1 KHz		19		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.75	1.2	Α
I _{scp}	Short Circuit Peak Current	$T_J = 25^{\circ}C$	1.3	2.2	3.3	Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 9: Electrical Characteristics Of LM7818 (refer to the test circuits, T_J = -55 to 150°C, V_I = 26V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	17.3	18	18.7	V
Vo	Output Voltage	$I_O = 5$ mA to 1 A $P_O \le 15$ W $V_I = 22$ to 33 V	17.1	18	18.9	V
ΔV _O (*)	Line Regulation	$V_{I} = 21 \text{ to } 33 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			180	mV
		$V_{I} = 24 \text{ to } 30 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			90	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			180	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			90	
I _d	Quiescent Current	T _J = 25°C			6	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 22 to 33 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		2.3		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C			40	μV/V _O
SVR	Supply Voltage Rejection	V _I = 22 to 32 V f = 120Hz	59			dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$		2	2.5	V
R _O	Output Resistance	f = 1 KHz		22		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.75	1.2	Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C	1.3	2.2	3.3	Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 11: Electrical Characteristics Of LM7824 (refer to the test circuits, T_J = -55 to 150°C, V_I = 33V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	23	24	25	V
V _O	Output Voltage	$I_O = 5$ mA to 1 A $P_O \le 15$ W $V_I = 28$ to 38 V	22.8	24	25.2	V
ΔV _O (*)	Line Regulation	$V_1 = 27 \text{ to } 38 \text{ V}$ $T_3 = 25 ^{\circ}\text{C}$			240	mV
		$V_{I} = 30 \text{ to } 36 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			120	
ΔV _O (*)	Load Regulation	$I_O = 5 \text{ mA to } 1.5 \text{ A}$ $T_J = 25^{\circ}\text{C}$			240	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			120	
I _d	Quiescent Current	T _J = 25°C			6	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 28 to 38 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		3		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25$ °C			40	μV/V _O
SVR	Supply Voltage Rejection	V _I = 28 to 38 V f = 120Hz	56			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2	2.5	V
R _O	Output Resistance	f = 1 KHz		28		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.75	1.2	Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C	1.3	2.2	3.3	Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 12: Electrical Characteristics Of LM7805C (refer to the test circuits, T_J = 0 to 125°C, V_I = 10V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	4.8	5	5.2	V
Vo	Output Voltage	I_O = 5 mA to 1 A $P_O \le 15W$ V_I = 7 to 20 V	4.75	5	5.25	V
ΔV _O (*)	Line Regulation	$V_{I} = 7 \text{ to } 25 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$		3	100	mV
		$V_{I} = 8 \text{ to } 12 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$		1	50	
$\Delta V_{O}(*)$	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			100	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			50	
I _d	Quiescent Current	T _J = 25°C			8	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 7 to 25 V			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		-1.1		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C		40		μV/V _O
SVR	Supply Voltage Rejection	V _I = 8 to 18 V f = 120Hz	62			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2		V
R _O	Output Resistance	f = 1 KHz		17		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.75		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 14: Electrical Characteristics Of LM7806C (refer to the test circuits, T_J = 0 to 125°C, V_I = 11V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	5.75	6	6.25	V
V _O	Output Voltage	$I_O = 5 \text{ mA to 1 A}$ $P_O \le 15W$ $V_I = 8 \text{ to 21 V}$	5.7	6	6.3	V
ΔV _O (*)	Line Regulation	$V_1 = 8 \text{ to } 25 \text{ V}$ $T_J = 25^{\circ}\text{C}$			120	mV
		$V_{I} = 9 \text{ to } 13 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			60	
$\Delta V_{O}(*)$	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			120	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			60	
I _d	Quiescent Current	T _J = 25°C			8	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 8 to 25 V			1.3	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		-0.8		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C		45		μV/V _O
SVR	Supply Voltage Rejection	V _I = 9 to 19 V f = 120Hz	59			dB
V _d	Dropout Voltage	$I_O = 1 \text{ A}$ $T_J = 25^{\circ}\text{C}$		2		V
R _O	Output Resistance	f = 1 KHz		19		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.55		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 15: Electrical Characteristics Of LM7808C (refer to the test circuits, T_J = 0 to 125°C, V_I = 14V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25$ °C	7.7	8	8.3	V
V _O	Output Voltage	I_O = 5 mA to 1 A $P_O \le 15W$ V_I = 10.5 to 25 V	7.6	8	8.4	V
ΔV _O (*)	Line Regulation	$V_I = 10.5 \text{ to } 25 \text{ V}$ $T_J = 25^{\circ}\text{C}$			160	mV
		$V_{I} = 11 \text{ to } 17 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			80	
ΔV _O (*)	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			160	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			80	
I _d	Quiescent Current	T _J = 25°C			8	mA
Δl_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 10.5 to 25 V			1	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		-0.8		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25$ °C		52		μV/V _O
SVR	Supply Voltage Rejection	V _I = 11.5 to 21.5 V f = 120Hz	56			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2		V
R _O	Output Resistance	f = 1 KHz		16		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.45		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 17: Electrical Characteristics Of LM7809C (refer to the test circuits, T_J = 0 to 125°C, V_I = 15V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$	8.64	9	9.36	V
Vo	Output Voltage	$I_O = 5$ mA to 1 A $P_O \le 15$ W $V_I = 11.5$ to 26 V	8.55	9	9.45	V
ΔV _O (*)	Line Regulation	$V_I = 11.5 \text{ to } 26 \text{ V}$ $T_J = 25^{\circ}\text{C}$			180	mV
		$V_{I} = 12 \text{ to } 18 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			90	
ΔV _O (*)	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			180	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			90	
I _d	Quiescent Current	T _J = 25°C			8	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 11.5 to 26 V			1	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		-1		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C		70		μV/V _O
SVR	Supply Voltage Rejection	V _I = 12 to 23 V f = 120Hz	55			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2		V
R _O	Output Resistance	f = 1 KHz		17		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.40		А
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 18: Electrical Characteristics Of LM7810C (refer to the test circuits, T_J = 0 to 125°C, V_I = 16V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	9.6	10	10.4	V
V _O	Output Voltage	I_O = 5 mA to 1 A $P_O \le 15W$ V_I = 12.5 to 26 V	9.5	10	10.5	V
$\Delta V_{O}(*)$	Line Regulation	$V_{I} = 12.5 \text{ to } 26 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			200	mV
		V _I = 13.5 to 19 V T _J = 25°C			100	
ΔV _O (*)	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			200	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			100	
I _d	Quiescent Current	T _J = 25°C			8	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 12.5 to 26 V			1	
$\Delta V_O/\Delta T$	Output Voltage Drift	I _O = 5 mA		-1		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25$ °C		70		μV/V _O
SVR	Supply Voltage Rejection	V _I = 13 to 23 V f = 120Hz	55			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2		V
R _O	Output Resistance	f = 1 KHz		17		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.40		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 19: Electrical Characteristics Of LM7812C (refer to the test circuits, T_J = 0 to 125°C, V_I = 19V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	11.5	12	12.5	V
Vo	Output Voltage	I_O = 5 mA to 1 A $P_O \le 15W$ V_I = 14.5 to 27 V	11.4	12	12.6	V
ΔV _O (*)	Line Regulation	$V_I = 14.5 \text{ to } 30 \text{ V}$ $T_J = 25^{\circ}\text{C}$			240	mV
		V _I = 16 to 22 V T _J = 25°C			120	
ΔV _O (*)	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			240	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			120	
I _d	Quiescent Current	T _J = 25°C			8	mA
Δl _d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 14.5 to 30 V			1	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		-1		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C		75		μV/V _O
SVR	Supply Voltage Rejection	V _I = 15 to 25 V f = 120Hz	55			dB
V_d	Dropout Voltage	I _O = 1 A T _J = 25°C		2		V
R _O	Output Resistance	f = 1 KHz		18		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.35		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		А

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 20: Electrical Characteristics Of LM7815C (refer to the test circuits, T_J = 0 to 125°C, V_I = 23V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	14.5	15	15.6	V
Vo	Output Voltage	$I_O = 5$ mA to 1 A $P_O \le 15$ W $V_I = 17.5$ to 30 V	14.25	15	15.75	V
ΔV _O (*)	Line Regulation	V _I = 17.5 to 30 V T _J = 25°C			300	mV
		$V_{I} = 20 \text{ to } 26 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			150	
ΔV _O (*)	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			300	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			150	
I _d	Quiescent Current	$T_J = 25$ °C			8	mA
Δl_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 17.5 to 30 V			1	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	$I_O = 5 \text{ mA}$		-1		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25$ °C		90		μV/V _O
SVR	Supply Voltage Rejection	V _I = 18.5 to 28.5 V f = 120Hz	54			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2		V
R _O	Output Resistance	f = 1 KHz		19		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.23		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.2		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 21: Electrical Characteristics Of LM7818C (refer to the test circuits, T_J = 0 to 125°C, V_I = 26V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	17.3	18	18.7	V
Vo	Output Voltage	I_O = 5 mA to 1 A $P_O \le 15W$ V_I = 21 to 33 V	17.1	18	18.9	V
$\Delta V_{O}(*)$	Line Regulation	$V_{I} = 21 \text{ to } 33 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			360	mV
		V _I = 24 to 30 V T _J = 25°C			180	
ΔV _O (*)	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			360	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			180	
I _d	Quiescent Current	T _J = 25°C			8	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 21 to 33 V			1	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	$I_O = 5 \text{ mA}$		-1		mV/°C
eN	Output Noise Voltage	B =10Hz to 100KHz $T_J = 25$ °C		110		μV/V _O
SVR	Supply Voltage Rejection	$V_1 = 22 \text{ to } 32 \text{ V}$ $f = 120 \text{Hz}$	53			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2		V
R _O	Output Resistance	f = 1 KHz		22		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.20		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.1		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

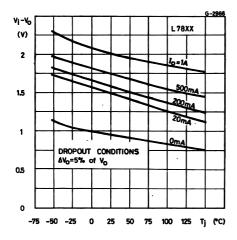
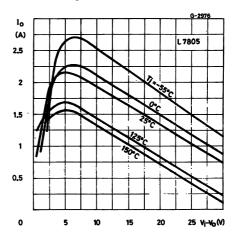


Table 23: Electrical Characteristics Of LM7824C (refer to the test circuits, T_J = 0 to 125°C, V_I = 33V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	23	24	25	V
V _O	Output Voltage	$I_O = 5$ mA to 1 A $P_O \le 15$ W $V_I = 27$ to 38 V	22.8	24	25.2	V
$\Delta V_{O}(*)$	Line Regulation	$V_1 = 27 \text{ to } 38 \text{ V}$ $T_J = 25^{\circ}\text{C}$			480	mV
		$V_{I} = 30 \text{ to } 36 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			240	
ΔV _O (*)	Load Regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$			480	mV
		$I_{O} = 250 \text{ to } 750 \text{ mA}$ $T_{J} = 25^{\circ}\text{C}$			240	
I _d	Quiescent Current	T _J = 25°C			8	mA
ΔI_d	Quiescent Current Change	I _O = 5 mA to 1 A			0.5	mA
		V _I = 27 to 38 V			1	
$\Delta V_{O}/\Delta T$	Output Voltage Drift	I _O = 5 mA		-1.5		mV/°C
eN	Output Noise Voltage	B = 10Hz to 100KHz $T_J = 25$ °C		170		μV/V _O
SVR	Supply Voltage Rejection	V _I = 28 to 38 V f = 120Hz	50			dB
V _d	Dropout Voltage	I _O = 1 A T _J = 25°C		2		V
R _O	Output Resistance	f = 1 KHz		28		mΩ
I _{sc}	Short Circuit Current	V _I = 35 V T _J = 25°C		0.15		Α
I _{scp}	Short Circuit Peak Current	T _J = 25°C		2.1		Α

^(*) Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Figure 8: Dropout Voltage vs Junction Temperature

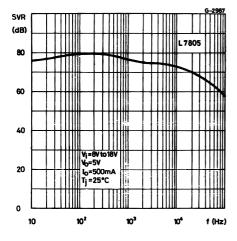


Figure 9: Peak Output Current vs Input/output Differential Voltage

Figure 10: Supply Voltage Rejection vs Frequency

Figure 11: Output Voltage vs Junction Temperature

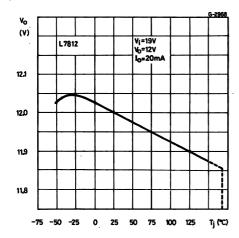
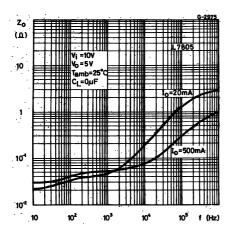



Figure 12: Output Impedance vs Frequency

Figure 13: Quiescent Current vs Junction Temperature

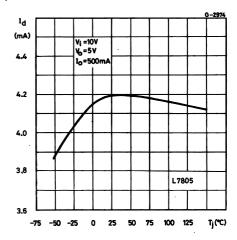


Figure 14: Load Transient Response

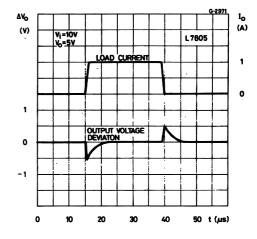
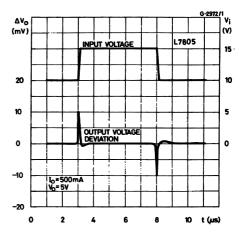
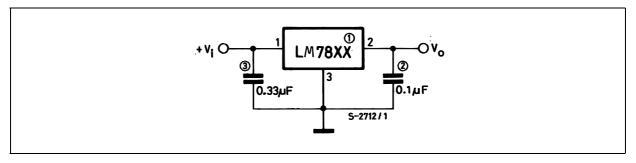



Figure 15: Line Transient Response



Ιd (mA) 5.0 4.0 L7805 30 V₁ (V)

Figure 16: Quiescent Current vs Input Voltage

Figure 17: Fixed Output Regulator

- To specify an output voltage, substitute voltage value for "XX".
 Although no output capacitor is need for stability, it does improve transient response.
 Required if regulator is locate an appreciable distance from power supply filter.

Figure 18: Current Regulator

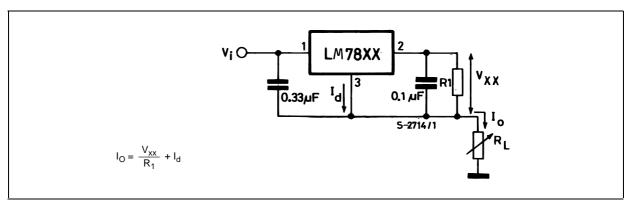


Figure 19: Circuit for Increasing Output Voltage

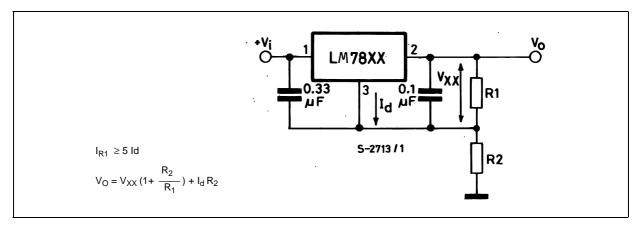


Figure 20: Adjustable Output Regulator (7 to 30V)

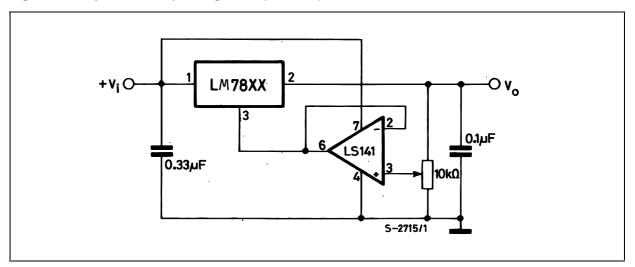
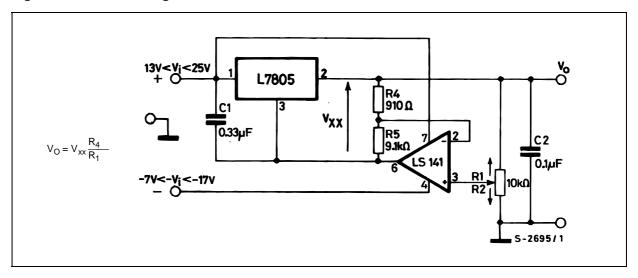



Figure 21: 0.5 to 10V Regulator

Important statement:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by HGSEMI manufacturer:

Other Similar products are found below:

LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG PQ3DZ53U LV56801P-E TLE42794G L78L05CZ/1SX L78LR05DL-MA-E 636416C 714954EB BA033LBSG2-TR LV5680P-E L78M15CV-DG TLS202B1MBV33HTSA1 L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 LV5680NPVC-XH LT1054CN8 MP2018GZD-5-Z MP2018GZD-33-Z MIC5281-3.3YMM MC78L06BP-AP TA48LS05F(TE85L,F) TA78L12F(TE12L,F) TC47BR5003ECT TCR2LN12,LF(S TCR2LN28,LF(S TCR2LN30,LF(S TCR3DF295,LM(CT TCR3DF40,LM(CT BA178M20CP-E2 L78M12ABDT LM7812SX/NOPB LR645N3-G-P003 LR645N3-G-P013 ZXTR2005P5-13 SCD7812BTG TCR3DF335,LM(CT ZXTR2012K-13 TLE42994E V33 ZXTR2008K-13 ZXTR2005K-13 L88R05DL-E ADP3300ARTZ-2.7RL7 LM120K-15/883 IFX54441LDVXUMA1